Skip to main content
Log in

Stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As one of the promising human—machine interfaces, wearable sensors play an important role in modern society, which advances the development of wearable fields, especially in the promising applications of electronic skin (e-skin), robotics, prosthetics, and healthcare. In the last decades, wearable sensors tend to be capable of attractive capabilities such as miniaturization, multifunction, and smart integration, and wearable properties such as lightweight, flexibility, stretchability, and conformability for wider applications. In this work, we developed a stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film (P-AgNW/SR). Its unique structural configuration, i.e., an assembly of the P-AgNW/SR with good conductivity, stability, and resistance response, and the insulated silicone rubber layer, provided the feasibility for realizing multiple sensing capabilities. Specifically, porous microstructures of the P-AgNW/SR made the device to be used for pressure sensing, exhibiting outstanding dynamic and static resistive responsive behaviors and having a maximum sensitivity of 9.062 %·N−1 in a continuous compressive force range of ∼ 16 N. With the merit of the good piezoresistive property of AgNW/SR networks embedded into the surface of micropores of the P-AgNW/SR, the device was verified to be a temperature sensor for detecting temperature changes in the human body and environment. The temperature sensor had good sensitivity of 0.844 %·°C−1, high linearity of 0.999 in the range of 25–125 °C, and remarkable dynamic stability. Besides, the developed sensor was demonstrated to be a single electrode-triboelectric sensor for active sensing, owing to the unique assembly of the conductive P-AgNW/SR electrode and the silicone rubber friction layer. Based on the coupling effect of the triboelectrification and electrostatic induction, the generated electrical signals could be used to sense the human motions, according to the quantitative correlation between the human motions and the features in amplitude and waveform of the output signals. Thus, the developed stretchable sensor successfully achieved the integration of two types of passive sensing capabilities, i.e., pressure and temperature sensing, and one type of active sensing capability, i.e., triboelectric sensing, demonstrating the feasibility of monitoring multiple variables of the human body and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J. et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248.

    CAS  Google Scholar 

  2. Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.

    Google Scholar 

  3. Shi, Q. F.; Dong, B. W.; He, T.; Sun, Z. D.; Zhu, J. X.; Zhang, Z. X.; Lee, C. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InfoMat 2020, 2, 1131–1162.

    Google Scholar 

  4. Li, Z.; Zheng, Q.; Wang, Z. L.; Li, Z. Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research 2020, 2020, 8710686.

    CAS  Google Scholar 

  5. Wang, X. W.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017, 13, 1602790.

    Google Scholar 

  6. Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; Xie, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262.

    CAS  Google Scholar 

  7. Liu, Y.; Bao, R. R.; Tao, J.; Li, J.; Dong, M.; Pan, C. F. Recent progress in tactile sensors and their applications in intelligent systems. Sci. Bull. 2020, 65, 70–88.

    Google Scholar 

  8. Teymourian, H.; Parrilla, M.; Sempionatto, J. R.; Montiel, N. F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 2020, 5, 2679–2700.

    CAS  Google Scholar 

  9. Xu, K. C.; Lu, Y. Y.; Takei, K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv. Mater. Technol. 2019, 4, 1800628.

    Google Scholar 

  10. Wang, C. F.; Dong, L.; Peng, D. F.; Pan, C. F. Tactile sensors for advanced intelligent systems. Adv. Intell. Syst. 2019, 1, 1900090.

    Google Scholar 

  11. Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.

    CAS  Google Scholar 

  12. Jia, L. Y.; Guo, Z. H.; Li, L. W.; Pan, C. X.; Zhang, P. P.; Xu, F.; Pu, X.; Wang, Z. L. Electricity generation and self-powered sensing enabled by dynamic electric double layer at hydrogel-dielectric elastomer interfaces. ACS Nano 2021, 15, 19651–19660.

    CAS  Google Scholar 

  13. Nayak, S.; Li, Y. D.; Tay, W.; Zamburg, E.; Singh, D.; Lee, C.; Koh, S. J. A.; Chia, P.; Thean, A. V. Y. Liquid-metal-elastomer foam for moldable multi-functional triboelectric energy harvesting and force sensing. Nano Energy 2019, 64, 103912.

    CAS  Google Scholar 

  14. Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res. 2018, 11, 1938–1955.

    Google Scholar 

  15. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

    CAS  Google Scholar 

  16. Qiu, J.; Guo, X. H.; Chu, R.; Wang, S. L.; Zeng, W.; Qu, L.; Zhao, Y. N.; Yan, F.; Xing, G. Z. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin. ACS Appl. Mater. Interfaces 2019, 11, 40716–40725.

    CAS  Google Scholar 

  17. Li, T.; Zou, J. D.; Xing, F.; Zhang, M.; Cao, X.; Wang, N.; Wang, Z. L. From dual-mode triboelectric nanogenerator to smart tactile sensor: A multiplexing design. ACS Nano 2017, 11, 3950–3956.

    CAS  Google Scholar 

  18. Yang, Y.; Lin, Z. H.; Hou, T.; Zhang, F.; Wang, Z. L. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res. 2012, 5, 888–895.

    CAS  Google Scholar 

  19. Liu, Q. X.; Tai, H. L.; Yuan, Z.; Zhou, Y. J.; Su, Y. J.; Jiang, Y. D. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring. Adv. Mater. Technol. 2019, 4, 1800594.

    Google Scholar 

  20. Davis, R. E.; McGregor, G. R.; Enfield, K. B. Humidity: A review and primer on atmospheric moisture and human health. Environ. Res. 2016, 144, 106–116.

    CAS  Google Scholar 

  21. Wen, D. L.; Liu, X.; Deng, H. T.; Sun, D. H.; Qian, H. Y.; Brugger, J.; Zhang, X. S. Printed silk-fibroin-based triboelectric nanogenerators for multi-functional wearable sensing. Nano Energy 2019, 66, 104123.

    CAS  Google Scholar 

  22. Song, Y.; Min, J. H.; Yu, Y.; Wang, H. B.; Yang, Y. R.; Zhang, H. X.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842.

    CAS  Google Scholar 

  23. Yang, Y. R.; Gao, W. Wearable pH sensing beyond the Nernst limit. Nat. Electron. 2018, 1, 580–581.

    Google Scholar 

  24. Song, J. K.; Kim, M. S.; Yoo, S.; Koo, J. H.; Kim, D. H. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res. 2021, 14, 2919–2937.

    CAS  Google Scholar 

  25. Shin, J.; Liu, Z. H.; Bai, W. B.; Liu, Y. H.; Yan, Y.; Xue, Y. G.; Kandela, I.; Pezhouh, M.; MacEwan, M. R.; Huang, Y. G. et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 2019, 5, eaaw1899.

    CAS  Google Scholar 

  26. He, J.; Zhang, Y. F.; Zhou, R. H.; Meng, L. R.; Chen, T.; Mai, W. J.; Pan, C. F. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. J. Materiomics 2020, 6, 86–101.

    Google Scholar 

  27. Zheng, Q. B.; Lee, J. H.; Shen, X.; Chen, X. D.; Kim, J. K. Graphene-based wearable piezoresistive physical sensors. Mater. Today 2020, 36, 158–179.

    Google Scholar 

  28. Ma, L. Q.; Shuai, X. T.; Hu, Y. E.; Liang, X. W.; Zhu, P. L.; Sun, R.; Wong, C. P. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J. Mater. Chem. C 2018, 6, 13232–13240.

    CAS  Google Scholar 

  29. Qiu, Z. G.; Wan, Y. B.; Zhou, W. H.; Yang, J. Y.; Yang, J. L.; Huang, J.; Zhang, J. M.; Liu, Q. X.; Huang, S. Y.; Bai, N. N. et al. Ionic skin with biomimetic dielectric layer templated from Calathea zebrine leaf. Adv. Funct. Mater. 2018, 28, 1802343.

    Google Scholar 

  30. Park, D. Y.; Joe, D. J.; Kim, D. H.; Park, H.; Han, J. H.; Jeong, C. K.; Park, H.; Park, J. G.; Joung, B.; Lee, K. J. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 2017, 29, 1702308.

    Google Scholar 

  31. Cao, X. L.; Xiong, Y.; Sun, J.; Zhu, X. X.; Sun, Q. J.; Wang, Z. L. Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv. Funct. Mater. 2021, 31, 2102983.

    CAS  Google Scholar 

  32. Ba, Y. Y.; Bao, J. F.; Wang, Z. Y.; Deng, H. T.; Wen, D. L.; Zhang, X. R.; Tu, C.; Zhang, X. S. Self-powered trajectory-tracking microsystem based on electrode-miniaturized triboelectric nanogenerator. Nano Energy 2021, 82, 105730.

    CAS  Google Scholar 

  33. Tao, J.; Bao, R. R.; Wang, X. D.; Peng, Y. Y.; Li, J.; Fu, S.; Pan, C. F.; Wang, Z. L. Self-powered tactile sensor array systems based on the triboelectric effect. Adv. Funct. Mater. 2019, 29, 1806379.

    CAS  Google Scholar 

  34. Wang, C.; Qu, X. C.; Zheng, Q.; Liu, Y.; Tan, P. C.; Shi, B. J.; Ouyang, H.; Chao, S. Y.; Zou, Y.; Zhao, C. C. et al. Stretchable, self-healing, and skin-mounted active sensor for multipoint muscle function assessment. ACS Nano 2021, 15, 10130–10140.

    CAS  Google Scholar 

  35. Wen, D. L.; Pang, Y. X.; Huang, P.; Wang, Y. L.; Zhang, X. R.; Deng, H. T.; Zhang, X. S. Silk fibroin-based wearable all-fiber multifunctional sensor for smart clothing. Adv. Fiber Mater. 2022, 4, 873–884.

    CAS  Google Scholar 

  36. Wang, L. R.; Xu, T. L.; Zhang, X. J. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC Trends Analyt. Chem. 2021, 134, 116130.

    CAS  Google Scholar 

  37. Yao, S. S.; Swetha, P.; Zhu, Y. Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 2018, 7, 1700889.

    CAS  Google Scholar 

  38. Qiao, Y. C.; Wang, Y. F.; Jian, J. M.; Li, Ml. R.; Jiang, G. Y.; Li, X. S.; Deng, G.; Ji, S. R.; Wei, Y. H.; Pang, Y. et al. Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon 2020, 156, 253–260.

    CAS  Google Scholar 

  39. Deng, H. T.; Zhang, X. R.; Wang, Z. Y.; Wen, D. L.; Ba, Y. Y.; Kim, B.; Han, M. D.; Zhang, H. X.; Zhang, X. S. Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite. Nano Energy 2021, 83, 105823.

    CAS  Google Scholar 

  40. Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Zheng, H. C.; Shao, H. Y.; Xia, Y. J.; Chen, C.; Lan, H. W.; Xie, X. K. et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018, 12, 2027–2034.

    CAS  Google Scholar 

  41. Park, J.; Lee, Y.; Ha, M.; Cho, S.; Ko, H. Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. J. Mater. Chem. B 2016, 4, 2999–3018.

    CAS  Google Scholar 

  42. Tang, R. T.; Lu, F. Y.; Liu, L. L.; Yan, Y.; Du, Q. F.; Zhang, B. C.; Zhou, T.; Fu, H. R. Flexible pressure sensors with microstructures. Nano Select 2021, 2, 1874–1901.

    CAS  Google Scholar 

  43. Chhetry, A.; Das, P. S.; Yoon, H.; Park, J. Y. A sandpaper-inspired flexible and stretchable resistive sensor for pressure and strain measurement. Org. Electron. 2018, 62, 581–590.

    CAS  Google Scholar 

  44. Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 2015, 1, e1500661.

    Google Scholar 

  45. Ning, C.; Dong, K.; Gao, W. C.; Sheng, F. F.; Cheng, R. W.; Jiang, Y.; Yi, J.; Ye, C. Y.; Peng, X.; Wang, Z. L. Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chem. Eng. J. 2021, 420, 129650.

    CAS  Google Scholar 

  46. Chen, H. T.; Miao, L. M.; Su, Z. M.; Song, Y.; Han, M. D.; Chen, X. X.; Cheng, X. L.; Chen, D. M.; Zhang, H. X. Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy 2017, 40, 65–72.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 62074029, 61905035, 61971108, 62004029, and 51905554), the Key Research and Development Program of Sichuan Province (Nos. 2022JDTD0020, 2022YFG0163, and 2020ZHCG0038), the Sichuan Science and Technology Program (No. 2020YJ0015), and the Fundamental Research Funds for the Central Universities (No. ZYGX2019Z002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Sheng Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, HT., Wen, DL., Liu, JR. et al. Stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film. Nano Res. 16, 7618–7626 (2023). https://doi.org/10.1007/s12274-023-5400-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5400-0

Keywords

Navigation