Skip to main content
Log in

Multi-attribute wearable pressure sensor based on multilayered modulation with high constant sensitivity over a wide range

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible pressure sensors capable of monitoring diverse physiological signals and body movements have garnered tremendous attention in wearable electronic devices. Thereinto, high constant sensitivity over a wide pressure range combined with breathability, biocompatibility, and biodegradability is pivotal for manufacturing of reliable pressure sensors in practical sensing applications. In this work, inspired by the multilayered structure of skin epidermis, we propose and demonstrate a multi-attribute wearable piezoresistive pressure sensor consisting of multilayered gradient conductive poly(ε-caprolactone) nanofiber membranes composites. In response to externally applied pressure, a layer-by-layer current path is activated inside the multilayered membranes composites, leading to the most salient sensing performance of high constant sensitivity of 33.955 kPa−1 within the pressure range of 0–80 kPa. The proposed pressure sensor also exhibits a fast response—relaxation time, a low detection limit, and excellent stability, which can be successfully used to measure human physiological signals. Lastly, an integrated sensor array system that can locate objects’ positions is constructed and applied to simulate sitting posture monitoring. These results indicate that the proposed pressure sensor holds great potential in health monitoring and wearable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

    CAS  Google Scholar 

  2. Lin, X. Z.; Li, F.; Bing, Y.; Fei, T.; Liu, S.; Zhao, H. R.; Zhang, T. Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication. Nano-Micro Lett. 2021, 13, 200.

    Google Scholar 

  3. Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

    CAS  Google Scholar 

  4. Yin, F. F.; Guo, Y. J.; Li, H.; Yue, W. J.; Zhang, C. W.; Chen, D.; Geng, W.; Li, Y.; Gao, S.; Shen, G. Z. A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Res. 2022, 15, 9341–9351.

    CAS  Google Scholar 

  5. Oh, H.; Yi, G. C.; Yip, M.; Dayeh, S. A. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics. Sci. Adv. 2020, 6, eabd7795.

    CAS  Google Scholar 

  6. Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. Y. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

    CAS  Google Scholar 

  7. Chen, J.; Han, K.; Luo, J. J.; Xu, L.; Tang, W.; Wang, Z. L. Soft robots with self-powered configurational sensing. Nano Energy 2020, 77, 105171.

    CAS  Google Scholar 

  8. Luo, S.; Zhou, X.; Tang, X. Y.; Li, J. L.; Wei, D. C.; Tai, G. J.; Chen, Z. Y.; Liao, T. M.; Fu, J. T.; Wei, D. P. et al. Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy 2021, 80, 105580.

    CAS  Google Scholar 

  9. Pyo, S.; Lee, J.; Bae, K.; Sim, S.; Kim, J. Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications. Adv. Mater. 2021, 33, 2005902.

    CAS  Google Scholar 

  10. Niu, H. S.; Li, H.; Gao, S.; Li, Y.; Wei, X.; Chen, Y. K.; Yue, W. J.; Zhou, W. J.; Shen, G. Z. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, 2202622.

    CAS  Google Scholar 

  11. Wei, X.; Li, H.; Yue, W. J.; Gao, S.; Chen, Z. X.; Li, Y.; Shen, G. Z. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022, 5, 1481–1501.

    Google Scholar 

  12. Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467.

    Google Scholar 

  13. Guo, Y. J.; Li, H.; Li, Y.; Wei, X.; Gao, S.; Yue, W. J.; Zhang, C. W.; Yin, F. F.; Zhao, S. F.; Kim, N. Y. et al. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv. Funct. Mater. 2022, 32, 2203585.

    CAS  Google Scholar 

  14. Ghosh, R.; Song, M. S.; Park, J. B.; Tchoe, Y.; Guha, P.; Lee, W.; Lim, Y.; Kim, B.; Kim, S. W.; Kim, M. et al. Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices. Nano Energy 2021, 80, 105537.

    CAS  Google Scholar 

  15. Cheng, Y. F.; Ma, Y. A.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145–2155.

    CAS  Google Scholar 

  16. Ha, K. H.; Zhang, W. Y.; Jang, H.; Kang, S.; Wang, L.; Tan, P.; Hwang, H.; Lu, N. S. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv. Mater. 2021, 33, 2103320.

    CAS  Google Scholar 

  17. Amoli, V.; Kim, J. S.; Kim, S. Y.; Koo, J.; Chung, Y. S.; Choi, H.; Kim, D. H. Ionic tactile sensors for emerging human-interactive technologies: A review of recent progress. Adv. Funct. Mater. 2020, 30, 1904532.

    CAS  Google Scholar 

  18. Niu, H. S.; Gao, S.; Yue, W. J.; Li, Y.; Zhou, W. J.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetricnanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774.

    CAS  Google Scholar 

  19. Gupta, K.; Brahma, S.; Dutta, J.; Rao, B.; Liu, C. P. Recent progress in microstructure development of inorganic one-dimensional nanostructures for enhancing performance of piezotronics and piezoelectric nanogenerators. Nano Energy 2019, 55, 1–21.

    CAS  Google Scholar 

  20. Mo, X. W.; Zhou, H.; Li, W. B.; Xu, Z. S.; Duan, J. J.; Huang, L.; Hu, B.; Zhou, J. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 2019, 65, 104033.

    CAS  Google Scholar 

  21. Wang, J.; Jiang, J. F.; Zhang, C. C.; Sun, M. Y.; Han, S. W.; Zhang, R. T.; Liang, N.; Sun, D. H.; Liu, H. Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors. Nano Energy 2020, 76, 105050.

    CAS  Google Scholar 

  22. Jiang, J. X.; Guan, Q. B.; Liu, Y. N.; Sun, X. H.; Wen, Z. Abrasion and fracture self-healable triboelectric nanogenerator with ultrahigh stretchability and long-term durability. Adv. Funct. Mater. 2021, 31, 2105380.

    CAS  Google Scholar 

  23. Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287.

    CAS  Google Scholar 

  24. Zheng, N.; Xue, J. H.; Jie, Y.; Cao, X.; Wang, Z. L. Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Res. 2022, 15, 6213–6219.

    CAS  Google Scholar 

  25. Yang, T.; Deng, W. L.; Chu, X.; Wang, X.; Hu, Y. T.; Fan, X.; Song, J.; Gao, Y. Y.; Zhang, B. B.; Tian, G. et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 2021, 15, 11555–11563.

    CAS  Google Scholar 

  26. Yan, J. F.; Ma, Y. N.; Jia, G.; Zhao, S. R.; Yue, Y.; Cheng, F.; Zhang, C. K.; Cao, M. L.; Xiong, Y. C.; Shen, P. Z. et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. 2022, 431, 133458.

    CAS  Google Scholar 

  27. Min, P.; Li, X. F.; Liu, P. F.; Liu, J.; Jia, X. Q.; Li, X. P.; Yu, Z. Z. Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv. Funct. Mater. 2021, 31, 2103703.

    CAS  Google Scholar 

  28. Lee, Y.; Myoung, J.; Cho, S.; Park, J.; Kim, J.; Lee, H.; Lee, Y.; Lee, S.; Baig, C.; Ko, H. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano 2021, 15, 1795–1804.

    CAS  Google Scholar 

  29. Song, Z. Q.; Li, W. Y.; Kong, H. J.; Chen, M. Q.; Bao, Y.; Wang, N.; Wang, W.; Liu, Z. B.; Ma, Y. M.; He, Y. et al. Merkel receptor-inspired integratable and biocompatible pressure sensor with linear and ultrahigh sensitive response for versatile applications. Chem. Eng. J. 2022, 444, 136481.

    CAS  Google Scholar 

  30. Sharma, S.; Chhetry, A.; Maharjan, P.; Zhang, S. P.; Shrestha, K.; Sharifuzzaman, M.; Bhatta, T.; Shin, Y.; Kim, D.; Lee, S. et al. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. Nano Energy 2022, 95, 106970.

    CAS  Google Scholar 

  31. Ma, C.; Xu, D.; Huang, Y. C.; Wang, P. Q.; Huang, J.; Zhou, J. Y.; Liu, W. F.; Li, S. T.; Huang, Y.; Duan, X. F. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 2020, 14, 12866–12876.

    CAS  Google Scholar 

  32. Zhong, M. J.; Zhang, L. J.; Liu, X.; Zhou, Y. N.; Zhang, M. Y.; Wang, Y. J.; Yang, L.; Wei, D. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chem. Eng. J. 2021, 412, 128649.

    CAS  Google Scholar 

  33. Guan, H.; Meng, J. W.; Cheng, Z. Y.; Wang, X. Q. Processing natural wood into a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 2020, 12, 46357–46365.

    CAS  Google Scholar 

  34. Yu, T. T.; Zhang, D. G.; Wu, Y. L.; Guo, S. Z.; Lei, F.; Li, Y.; Yang, J. Y. Graphene foam pressure sensor based on fractal electrode with high sensitivity and wide linear range. Carbon 2021, 182, 497–505.

    CAS  Google Scholar 

  35. Qin, Z. H.; Sun, X.; Yu, Q. Y.; Zhang, H. T.; Wu, X. J.; Yao, M. M.; Liu, W. W.; Yao, F. L.; Li, J. J. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 2020, 12, 4944–4953.

    CAS  Google Scholar 

  36. Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

    CAS  Google Scholar 

  37. Tang, Z. H.; Jia, S. H.; Zhou, C. H.; Li, B. 3D printing of highly sensitive and large-measurement-range flexible pressure sensors with a positive piezoresistive effect. ACS Appl. Mater. Interfaces 2020, 12, 28669–28680.

    CAS  Google Scholar 

  38. Du, Q. F.; Liu, L. L.; Tang, R. T.; Ai, J.; Wang, Z. J.; Fu, Q. Q.; Li, C. X.; Chen, Y.; Feng, X. High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics. Adv. Mater. Technol. 2021, 6, 2100122.

    CAS  Google Scholar 

  39. Chen, B. D.; Zhang, L.; Li, H. Q.; Lai, X. J.; Zeng, X. R. Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J. Colloid Interface Sci. 2022, 617, 478–488.

    CAS  Google Scholar 

  40. Wei, Q. K.; Chen, G. R.; Pan, H.; Ye, Z. B.; Au, C.; Chen, C. X.; Zhao, X.; Zhou, Y. H.; Xiao, X.; Tai, H. L. et al. MXene-sponge based high-performance piezoresistive sensor for wearable biomonitoring and real-time tactile sensing. Small Methods 2022, 6, 2101051.

    CAS  Google Scholar 

  41. Zhu, G. T.; Dai, H. T.; Yao, Y.; Tang, W. L.; Shi, J. P.; Yang, J. Q.; Zhu, L. Y. 3D printed skin-inspired flexible pressure sensor with gradient porous structure for tunable high sensitivity and wide linearity range. Adv. Mater. Technol. 2022, 7, 2101239.

    CAS  Google Scholar 

  42. Qu, C.; Zhao, P.; Wu, C. D.; Zhuang, Y.; Liu, J. M.; Li, W. H.; Liu, Z.; Liu, J. H. Electrospun PAN/PANI fiber film with abundant active sites for ultrasensitive trimethylamine detection. Sens. Actuators B: Chem. 2021, 338, 129822.

    CAS  Google Scholar 

  43. Sharma, S.; Chhetry, A.; Zhang, S. P.; Yoon, H.; Park, C.; Kim, H.; Sharifuzzaman, M.; Hui, X.; Park, J. Y. Hydrogen-bond-triggered hybrid nanofibrous membrane-based wearable pressure sensor with ultrahigh sensitivity over a broad pressure range. ACS Nano 2021, 15, 4380–4393.

    CAS  Google Scholar 

  44. Yue, O. Y.; Wang, X. C.; Liu, X. H.; Hou, M. D.; Zheng, M. H.; Wang, Y. Y.; Cui, B. Q. Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure. Adv. Sci. 2021, 8, 2004377.

    CAS  Google Scholar 

  45. Li, Y. M.; Li, X.; Zhao, R.; Wang, C. Y.; Qiu, F. P.; Sun, B. L.; Ji, H.; Qiu, J.; Wang, C. Enhanced adhesion and proliferation of human umbilical vein endothelial cells on conductive PANI-PCL fiber scaffold by electrical stimulation. Mater. Sci. Eng.: C 2017, 72, 106–112.

    CAS  Google Scholar 

  46. Ma, M.; Djanashvili, K.; Smith, W. A. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys. Chem. Chem. Phys. 2015, 17, 20861–20867.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62174068 and 61888102), Rizhao City Key Research and Development Program (No. 2021ZDYF010102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Guozhen Shen.

Electronic Supplementary Material

12274_2022_5371_MOESM1_ESM.pdf

Multi-attribute wearable pressure sensor based on multilayered modulation with high constant sensitivity over a wide range

Supplementary material, approximately 35.7 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Gao, S., Li, Y. et al. Multi-attribute wearable pressure sensor based on multilayered modulation with high constant sensitivity over a wide range. Nano Res. 16, 7583–7592 (2023). https://doi.org/10.1007/s12274-022-5371-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5371-6

Keywords

Navigation