Skip to main content
Log in

The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The phytohormone abscisic acid (ABA) affects a wide range of stages of plant development as well as the plant’s response to biotic and abiotic stresses. Manipulation of ABA signaling in commercial crops holds promising potential for improving crop yields. Several decades of research have been invested in attempts to identify the first components of the ABA signaling cascade. It was only in 2009, that two independent groups identified the PYR/PYL/RCAR protein family as the plant ABA receptor. This finding was followed by a surge of studies on ABA signal transduction, many of them using Arabidopsis as their model. The ABA signaling cascade was found to consist of a double-negative regulatory mechanism assembled from three protein families. These include the ABA receptors, the PP2C family of inhibitors, and the kinase family, SnRK2. It was found that ABA-bound PYR/RCARs inhibit PP2C activity, and that PP2Cs inactivate SnRK2s. Researchers today are examining how the elucidation of the ABA signaling cascade in Arabidopsis can be applied to improvements in commercial agriculture. In this article, we have attempted to review recent studies which address this issue. In it, we discuss various approaches useful in identifying the genetic and protein components involved. Finally, we suggest possible commercial applications of genetic manipulation of ABA signaling to improve crop yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Nat Acad Sci 89:10183–10187

    Article  PubMed  CAS  Google Scholar 

  • Arve LE, Torre S, Olsen JE, Tanino KK (2011) Stomatal responses to drought stress and air humidity. In: Shanker A (ed) Abiotic Stress. INTECH Open Access Publisher, pp 267–280

  • Astacio MG, van Iersel MW (2011) Determining the effects of abscisic acid drenches on evapotranspiration and leaf gas exchange of tomato. HortScience 46:1512–1517

    Google Scholar 

  • Boneh U, Biton I, Schwartz A, Ben-Ari G (2012a) Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci 187:89–96

    Article  PubMed  CAS  Google Scholar 

  • Boneh U, Biton I, Zheng C, Schwartz A, Ben-Ari G (2012b) Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Rep 31:311–321

    Article  PubMed  CAS  Google Scholar 

  • Bork P, Brown NP, Hegyi H, Schultz J (1996) The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Sci 5:1421–1425

    Article  PubMed  CAS  Google Scholar 

  • Brock AK, Willmann R, Kolb D, Grefen L, Lajunen HM, Bethke G, Lee J, Nurnberger T, Gust AA (2010) The arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression. Plant Physiol 153:1098–1111

    Article  PubMed  CAS  Google Scholar 

  • Cantin CM, Fidelibus MW, Crisostoc CH (2007) Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes. Postharvest Biol Technol 46:237–241

    Article  CAS  Google Scholar 

  • Cherel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  PubMed  CAS  Google Scholar 

  • Doyle DF, Braasch DA, Jackson LK, Weiss HE, Boehm MF, Mangelsdorf DJ, Corey DR (2001) Engineering orthogonal ligand-receptor pairs from “near drugs”. J Am Chem Soc 123:11367–11371

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA 106:8380–8385

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, Cutler SR, Sheen J, Rodriguez PL, Zhu J-K (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Verslues PE, Zhu J-K (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA 108:1717–1722

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K et al (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  PubMed  CAS  Google Scholar 

  • Gagne S, Cluzet S, Merillon JM, Geny L (2011) ABA initiates anthocyanin production in grape cell cultures. J Plant Growth Regul 30:1–10

    Article  CAS  Google Scholar 

  • Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J 53:717–730

    Article  PubMed  CAS  Google Scholar 

  • Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD (2010) Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta 232:219–234

    Article  PubMed  CAS  Google Scholar 

  • Gao YJ, Zeng QN, Guo JJ, Cheng J, Ellis BE, Chen JG (2007) Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J 52:1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cadenas A, Zentella R, Walker-Simmons MK, Ho THD (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13:667–679

    PubMed  CAS  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AAR, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1909

    PubMed  CAS  Google Scholar 

  • Guo JJ, Zeng QN, Emami M, Ellis BE, Chen JG (2008) The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS ONE 3

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hao Q, Yin P, Li WQ, Wang L, Yan CY, Lin ZH, Wu JZ, Wang JW, Yan SF, Yan N (2011) The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol Cell 42:662–672

    Article  PubMed  Google Scholar 

  • Hauser F, Waadt R, Schroeder, Julian I (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr biol 21:R346–R355

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Sharp PM (1988) Clustal—a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Umezawa T (2010) The PP2C-SnRK2 complex: the central regulator of an abscisic acid signaling pathway. Plant Signal Behav 5:160–163

    Article  PubMed  CAS  Google Scholar 

  • Holappa LD, Walker-Simmons MK (1995) The wheat abscisic acid-responsive protein-kinase messenger-RNA, PKABA1, is up-regulated by dehydration, cold temperature, and osmotic-stress. Plant Physiol 108:1203–1210

    PubMed  CAS  Google Scholar 

  • Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708

    Article  PubMed  CAS  Google Scholar 

  • Joshi-Saha A, Valon C, Leung J (2011) Abscisic acid signal off the STARTing block. Mol Plant 4:562–580

    Article  PubMed  CAS  Google Scholar 

  • Kim J, van Iersel MW (2011) Abscisic acid drenches can reduce water use and extend shelf life of Salvia splendens. Sci Hortic 127:420–423

    Article  CAS  Google Scholar 

  • Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG (2012) A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Kline KG, Sussman MR, Jones AM (2010) Abscisic acid receptors. Plant Physiol 154:479–482

    Article  PubMed  CAS  Google Scholar 

  • Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177

    Article  PubMed  CAS  Google Scholar 

  • Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI (2006) The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140:127–139

    Article  PubMed  CAS  Google Scholar 

  • Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15:859–872

    Article  PubMed  CAS  Google Scholar 

  • Lang M, Orgogozo V (2011) Identification of homologous gene sequences by PCR with degenerate primers. In: Orgogozo V, Rockman MV (eds) Molecular methods for evolutionary genetics. Humana Press, New Jersey, pp 245–256

    Google Scholar 

  • L-b Li, Y-r Zhang, K-c Liu, Z-f Ni, Z-j Fang, Q-x Sun, J-w Gao (2010) Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in Sorghum. Agric Sci China 9:19–30

    Article  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    PubMed  CAS  Google Scholar 

  • Li JX, Assmann SM (1996) An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell 8:2359–2368

    PubMed  CAS  Google Scholar 

  • Li JX, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    Article  PubMed  CAS  Google Scholar 

  • Li F-H, Fu F-L, Sha L-N, He L, Li W-C (2009) Differential expression of serine/threonine protein phosphatase type-2C under drought stress in Maize. Plant Mol Biol Report 27:29–37

    Article  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Hu X, Song J, Zong X, Li D, Li D (2009) Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. J Plant Physiol 166:531–542

    Article  PubMed  CAS  Google Scholar 

  • Lurie S, Ovadia R, Nissim-Levi A, Oren-Shamir M, Kaplunov T, Zutahy Y, Weksler H, Lichter A (2009) Abscisic acid improves colour development in ‘Crimson Seedless’ grapes in the vineyard and on detached berries. J Hortic Sci Biotechnol 84:639–644

    CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    PubMed  CAS  Google Scholar 

  • Mao X, Zhang H, Tian S, Chang X, Jing R (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696

    Article  PubMed  CAS  Google Scholar 

  • McElroy D, Rothenberg M, Reece KS, Wu R (1990) Characterization of the rice (Oryza sativa) actin gene family. Plant Mol Biol 15:257–268

    Article  PubMed  CAS  Google Scholar 

  • Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V et al (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602–608

    Article  PubMed  CAS  Google Scholar 

  • Melcher K, Zhou XE, Xu HE (2010) Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Curr Opin Struct Biol 20:722–729

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    Article  PubMed  CAS  Google Scholar 

  • Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang HJ, Asano A, Miyauchi Y, Takahashi M, Zhi YH, Fujita Y et al (2009) Structural basis of abscisic acid signalling. Nature 462:609–614

    Article  PubMed  CAS  Google Scholar 

  • Monks DE, Aghoram K, Courtney PD, DeWald DB, Dewey RE (2001) Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell 13:1205–1219

    PubMed  CAS  Google Scholar 

  • Mosquna A, Peterson FC, Park S-Y, Lozano-Juste J, Volkman BF, Cutler SR (2011) Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation. Proc Natl Acad Sci

  • Muller R, Stummann BM, Andersen AS, Serek M (1999) Involvement of ABA in postharvest life of miniature potted roses. Plant Growth Regul 29:143–150

    Article  CAS  Google Scholar 

  • Muschietti J, McCormick S (2010) Abscisic acid (ABA) receptors: light at the end of the tunnel. F1000 Biol Rep 2

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007) ABA-hypersensitive germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50:935–949

    Article  PubMed  CAS  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J et al (2010) PYR/PYL/RCAR family members are major in vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290–299

    Article  PubMed  CAS  Google Scholar 

  • Padidam M, Gore M, Lu DL, Smirnova O (2003) Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgenic Res 12:101–109

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed  CAS  Google Scholar 

  • Pompodakis NE, Joyce DC, Terry LA, Lydakis DE (2004) Effects of vase solution pH and abscisic acid on the longevity of cut ‘Baccara’ roses. J Hortic Sci Biotechnol 79:828–832

    CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol Plant 40:1–22

    CAS  Google Scholar 

  • Puli MR, Raghavendra AS (2012) Pyrabactin, an ABA agonist, induced stomatal closure and changes in signalling components of guard cells in abaxial epidermis of Pisum sativum. J Exp Bot 63:1349–1356

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Razem FA, Luo M, Liu JH, Abrams SR, Hill RD (2004) Purification and characterization of a barley aleurone abscisic acid-binding protein. J Biol Chem 279:9922–9929 (Retracted article. See vol 285, p 4264, 2010)

    Article  PubMed  CAS  Google Scholar 

  • Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim T-H, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150:1345–1355

    Article  PubMed  CAS  Google Scholar 

  • Saavedra X, Modrego A, Rodriguez D, Paz Gonzalez-Garcia M, Sanz L, Nicolas G, Lorenzo O (2010) The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol 152:133–150

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37:354–369

    Article  PubMed  CAS  Google Scholar 

  • Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R, Rodriguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol 141:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park SY, Jamin M, Cutler SR, Rodriguez PL, Marquez JA (2009a) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S-Y, Márquez JA, Cutler SR, Rodriguez PL (2009b) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez-Guzman M, Rodriguez L, Márquez JA, Rodriguez PL (2012) Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci 182:3–11

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243

    Article  PubMed  CAS  Google Scholar 

  • Shen YY, Wang XF, Wu FQ, Du SY, Cao Z, Shang Y, Wang XL, Peng CC, Yu XC, Zhu SY et al (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826

    Article  PubMed  CAS  Google Scholar 

  • Soon F-F, Ng L-M, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He Y, Xu Y, Chalmers MJ et al (2011) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science

  • Sun L, Wang Y-P, Chen P, Ren J, Ji K, Li Q, Li P, Dai S-J, Leng P (2011) Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62:5659–5669

    Article  PubMed  CAS  Google Scholar 

  • Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J 61:25–35

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson AJ, Mulholland BJ, Jackson AC, McKee JM, Hilton HW, Symonds RC, Sonneveld T, Burbidge A, Stevenson P, Taylor IB (2007) Regulation and manipulation of ABA biosynthesis in roots. Plant Cell Environ 30:67–78

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T (2011) Systems biology approaches to abscisic acid signaling. J Plant Res 124:539–548

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed  CAS  Google Scholar 

  • Waterland NL, Campbell CA, Finer JJ, Jones ML (2010a) Abscisic acid application enhances drought stress tolerance in bedding plants. HortScience 45:409–413

    Google Scholar 

  • Waterland NL, Finer JJ, Jones ML (2010b) Abscisic acid applications decrease stomatal conductance and delay wilting in drought-stressed Chrysanthemums. HortTechnology 20:896–901

    CAS  Google Scholar 

  • Weiner JJ, Peterson FC, Volkman BF, Cutler SR (2010) Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 13:495–502

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Liu L, Ni ZY, Liu P, Chen M, Li LC, Chen YF, Ma YZ (2009) W55a encodes a novel protein kinase that is involved in multiple stress responses. J Integr Plant Biol 51:58–66

    Article  PubMed  CAS  Google Scholar 

  • Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. Bmc Genomics 9:550

    Article  PubMed  Google Scholar 

  • Yamauchi D, Zentella R, Ho THD (2002) Molecular analysis of the barley (Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Planta 215:319–326

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4:6

    Article  PubMed  Google Scholar 

  • Yin P, Fan H, Hao Q, Yuan XQ, Wu D, Pang YX, Yan CY, Li WQ, Wang JW, Yan N (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16:1230–1242

    Article  PubMed  CAS  Google Scholar 

  • Ying S, Zhang D-F, Li H-Y, Liu Y-H, Shi Y-S, Song Y-C, Wang T-Y, Li Y (2011) Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant Cell Rep 30:1683–1699

    Article  PubMed  CAS  Google Scholar 

  • Y-m Chai, H-f Jia, C-l Li, Q-h Dong, Y-y Shen (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Botany 62:5079–5089

    Article  Google Scholar 

  • Zavallo D, Lopez Bilbao M, Hopp H, Heinz R (2010) Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.). Plant Cell Rep 29:239–248

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Davies W (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant, Cell Environ 12:73–81

    Article  CAS  Google Scholar 

  • Zhang DP, Wu ZY, Li XY, Zhao ZX (2002) Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol 128:714–725

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Mao X, Wang C, Jing R (2010) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5:e16041

    Article  PubMed  CAS  Google Scholar 

  • Zhang HY, Mao XG, Zhang JN, Chang XP, Wang CS, Jing RL (2011) Genetic diversity analysis of abiotic stress response gene TaSnRK2.7-A in common wheat. Genetica 139:743–753

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giora Ben-Ari.

Additional information

Communicated by R. Reski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Ari, G. The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis. Plant Cell Rep 31, 1357–1369 (2012). https://doi.org/10.1007/s00299-012-1292-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-012-1292-2

Keywords

Navigation