Skip to main content
Log in

Wheat Growth Dependent Succession of Culturable Endophytic Bacteria and Their Plant Growth Promoting Traits

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Endophytic bacteria present ubiquitously in all plant parts. Their community structure may vary depending on plant tissue and growth condition. This work mainly focused on exploring the diversity of culturable nitrogen-fixing endophytic bacteria in above-ground plant parts of wheat by harvesting it during various growth points (Seed stage, 1st, 2nd, and 3rd month old plants, respectively). Distinct endophytic bacterial colonies were selected on Jensen’s agar plate. Based on the 16S rRNA sequencing, 43 putative nitrogen-fixing endophytic bacteria were identified. Most of the isolates were found unique to the plant growth phase except for Pseudomonas sp., Bacillus sp., Paenibacillus sp., Microbacterium sp., Exiguobacterium sp. Further, endophytic bacteria were scrutinized for their plant growth promoting traits. They were found positive for IAA production (100%), P-solubilization (21%), Zn-solubilization (63%), ammonia production (93%), and nifH gene (33%). Extracellular enzyme production was found positive for cellulase (98%), pectinase (98%), and protease (100%). Their endophytic colonization ability was assessed using reactive oxygen species (ROS) induction assay, upon their entry inside the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Patel JK, Archana G (2017) Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417:99–116. https://doi.org/10.1007/s11104-017-3244-7

    Article  CAS  Google Scholar 

  2. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  3. Li B, Li YY, Wu HM et al (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci USA 113:6496–6501. https://doi.org/10.1073/pnas.1523580113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Q, Acuña JJ, Inostroza NG et al (2019) Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-41160-x

    Article  CAS  Google Scholar 

  5. Hartmann A, Fischer D, Kinzel L et al (2019) Assessment of the structural and functional diversities of plant microbiota: achievements and challenges—a review. J Adv Res 19:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zinniel DK, Lambrecht P, Harris NB et al (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208. https://doi.org/10.1128/AEM.68.5.2198-2208.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chi F, Shen SH, Cheng HP et al (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278. https://doi.org/10.1128/AEM.71.11.7271-7278.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rana KL, Kour D, Kaur T et al (2020) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sect B. https://doi.org/10.1007/s40011-020-01168-0

    Article  Google Scholar 

  9. Emami S, Alikhani HA, Pourbabaei AA et al (2019) Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environ Sci Pollut Res 26:19804–19813. https://doi.org/10.1007/s11356-019-05284-x

    Article  CAS  Google Scholar 

  10. Frank A, Saldierna Guzmán J, Shay J (2017) Transmission of bacterial endophytes. Microorganisms 5:70. https://doi.org/10.3390/microorganisms5040070

    Article  CAS  PubMed Central  Google Scholar 

  11. Hassani MA, Özkurt E, Seybold H et al (2019) Interactions and coadaptation in plant metaorganisms. Annu Rev Phytopathol 57:483–503. https://doi.org/10.1146/annurev-phyto-082718-100008

    Article  CAS  PubMed  Google Scholar 

  12. Pinski A, Betekhtin A, Hupert-Kocurek K et al (2019) Defining the genetic basis of plant-endophytic bacteria interactions. Int J Mol Sci 20:1947. https://doi.org/10.3390/ijms20081947

    Article  CAS  PubMed Central  Google Scholar 

  13. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    Article  CAS  Google Scholar 

  14. Patel JK, Madaan S, Archana G (2018) Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol Res 215:36–45. https://doi.org/10.1016/j.micres.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  15. Rosenblueth M, Ormeño-Orrillo E, López-López A et al (2018) Nitrogen fixation in cereals. Front Microbiol 9:1794

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lata R, Chowdhury S, Gond SK, White JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276. https://doi.org/10.1111/lam.12855

    Article  CAS  PubMed  Google Scholar 

  17. Nanda S, Mohanty B, Joshi RK (2019) Endophyte-mediated host stress tolerance as a means for crop improvement. Springer, Cham, pp 677–701

    Google Scholar 

  18. Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech. https://doi.org/10.1007/s13205-017-0942-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, Third Edition. Molecular cloning: a laboratory a manual. Cold Spring Harbor Laboratory Press, New York, p 2100

    Google Scholar 

  20. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  21. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  22. Poly F, Ranjard L, Nazaret S et al (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262. https://doi.org/10.1128/AEM.67.5.2255-2262.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living Rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181. https://doi.org/10.1016/j.micres.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  24. Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1:142–146. https://doi.org/10.1111/J.1399-3054.1948.TB07118.X

    Article  CAS  Google Scholar 

  25. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  26. Dinesh R, Srinivasan V, Hamza S et al (2018) Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma. https://doi.org/10.1016/j.geoderma.2018.02.013

    Article  Google Scholar 

  27. Teather RM, Wood PJ (1982) Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pillai P, Archana G (2008) Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl Microbiol Biotechnol 784(78):643–650. https://doi.org/10.1007/S00253-008-1355-Z

    Article  Google Scholar 

  29. Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141. https://doi.org/10.1016/S0168-1656(01)00333-9

    Article  CAS  PubMed  Google Scholar 

  30. Cappuccino JG, Sherman N (1992) Biochemical activities of microorganisms. Microbiol A Lab Manual Benjamin/Cummings Publ Co California, California, pp 188–247

    Google Scholar 

  31. Nagpure A, Gupta RK (2013) Purification and characterization of an extracellular chitinase from antagonistic streptomyces violaceusniger. J Basic Microbiol. https://doi.org/10.1002/jobm.201100648

    Article  PubMed  Google Scholar 

  32. Saha S, Roy RN, Sen SK, Ray AK (2006) Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquac Res. https://doi.org/10.1111/j.1365-2109.2006.01442.x

    Article  Google Scholar 

  33. Khatri BP, Bhattarai T, Shrestha S, Maharjan J (2015) Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu conservation area, Gorkha, Nepal. Springerplus 4:488. https://doi.org/10.1186/s40064-015-1286-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. In: Coico R, Kowalik T, Quarles J, Stevenson B, Taylor R (eds) Current protocols in microbiology. Wiley, Hoboken

    Google Scholar 

  35. Verma SK, Kingsley K, Bergen M et al (2018) Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422:223–238. https://doi.org/10.1007/s11104-017-3339-1

    Article  CAS  Google Scholar 

  36. White JF, Torres MS, Somu MP et al (2014) Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microsc Res Tech 77:566–573. https://doi.org/10.1002/jemt.22375

    Article  CAS  PubMed  Google Scholar 

  37. Onofri A, Pannacci E (2014) Spreadsheet tools for biometry classes in crop science programmes. Commun Biometry Crop Sci 9(2):43–53

    Google Scholar 

  38. Johnston-Monje D, Mousa WK, Lazarovits G, Raizada MN (2014) Impact of swapping soils on the endophytic bacterial communities of pre-domesticated, ancient and modern maize. BMC Plant Biol 14:233. https://doi.org/10.1186/s12870-014-0233-3

    Article  PubMed  PubMed Central  Google Scholar 

  39. Žiarovská J, Medo J, Kyseľ M et al (2020) Endophytic bacterial microbiome diversity in early developmental stage plant tissues of wheat varieties. Plants 9:266. https://doi.org/10.3390/plants9020266

    Article  CAS  PubMed Central  Google Scholar 

  40. Agnolucci M, Palla M, Cristani C et al (2019) Beneficial plant microorganisms affect the endophytic bacterial communities of durum wheat roots as detected by different molecular approaches. Front Microbiol 10:2500. https://doi.org/10.3389/fmicb.2019.02500

    Article  PubMed  PubMed Central  Google Scholar 

  41. Khan AL, Waqas M, Kang SM et al (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695. https://doi.org/10.1007/s12275-014-4002-7

    Article  CAS  PubMed  Google Scholar 

  42. de Oliveira Costa LE, de Queiroz MV, Borges AC et al (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43:1562–1575

    Article  PubMed  PubMed Central  Google Scholar 

  43. Deng ZS, Zhao LF, Xu L et al (2011) Paracoccus sphaerophysae sp. nov., a siderophore-producing, endophytic bacterium isolated from root nodules of Sphaerophysa salsula. Int J Syst Evol Microbiol 61:665–669. https://doi.org/10.1099/ijs.0.021071-0

    Article  CAS  PubMed  Google Scholar 

  44. Zhao L, Xu Y, Lai XH et al (2015) Screening and characterization of endophytic bacillus and paenibacillus strains from medicinal plant lonicera japonica for use as potential plant growth promoters. Braz J Microbiol 46:977–989. https://doi.org/10.1590/S1517-838246420140024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zacaria Vital T, Román-Ponce B, Rivera Orduña FN et al (2019) An endophytic Kocuria palustris strain harboring multiple arsenate reductase genes. Arch Microbiol 201:1285–1293. https://doi.org/10.1007/s00203-019-01692-2

    Article  CAS  PubMed  Google Scholar 

  46. Ponpandian LN, Rim SO, Shanmugam G et al (2019) Phylogenetic characterization of bacterial endophytes from four Pinus species and their nematicidal activity against the pine wood nematode. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-48745-6

    Article  CAS  Google Scholar 

  47. Dahal B, NandaKafle G, Perkins L, Brözel VS (2017) Diversity of free-living nitrogen fixing streptomyces in soils of the badlands of South Dakota. Microbiol Res 195:31–39. https://doi.org/10.1016/j.micres.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  48. Szilagyi-Zecchin VJ, Ikeda AC, Hungria M et al (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4:1–9. https://doi.org/10.1186/s13568-014-0026-y

    Article  CAS  Google Scholar 

  49. Haidar B, Ferdous M, Fatema B et al (2018) Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiol Res 208:43–53. https://doi.org/10.1016/j.micres.2018.01.008

    Article  PubMed  Google Scholar 

  50. Lee S, Flores-Encarnación M, Contreras-Zentella M et al (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186:5384–5391. https://doi.org/10.1128/JB.186.16.5384-5391.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moliszewska EB, Nabrdalik M (2020) Application and biological impact of endophytic bacteria as IAA producers. Molecular aspects of plant beneficial microbes in agriculture. Elsevier, Amsterdam, pp 77–87

    Chapter  Google Scholar 

  52. Kahtani AL, Fouda A, Attia KA et al (2020) Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy. https://doi.org/10.3390/agronomy10091325

    Article  Google Scholar 

  53. Etesami H, Alikhani HA, Mirseyed Hosseini H (2015) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. Springer International Publishing, Cham, pp 183–258

    Google Scholar 

  54. Oteino N, Lally RD, Kiwanuka S et al (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745. https://doi.org/10.3389/fmicb.2015.00745

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kamran S, Shahid I, Baig DN et al (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593. https://doi.org/10.3389/fmicb.2017.02593

    Article  PubMed  PubMed Central  Google Scholar 

  56. Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49

    Article  CAS  PubMed  Google Scholar 

  57. Compant S, Kaplan H, Sessitsch A et al (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93. https://doi.org/10.1111/j.1574-6941.2007.00410.x

    Article  CAS  PubMed  Google Scholar 

  58. Prieto P, Schilirò E, Maldonado-González MM et al (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445. https://doi.org/10.1007/s00248-011-9827-6

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tariq M, Hameed S, Yasmeen T et al (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 30:719–725. https://doi.org/10.1007/s11274-013-1488-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JKP is grateful to Dr. Datta Madamwar, UGC-BSR-Faculty Fellow, PG Department of Biosciences, Gujarat, India, for providing facilitates and reagents for DNA sequencing.

Funding

This research work was supported by Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat, India.

Author information

Authors and Affiliations

Authors

Contributions

JKP carried out the conceptualization, experimental designing, identification and DNA sequencing of isolates, data analysis, and writing the manuscript. KG and HP performed the experiments related to isolation of diazotrophic endophytic bacteria and characterization of plant growth promoting traits, respectively. TS carried out the experiments on endophytic colonization and root hair formation assay.

Corresponding author

Correspondence to Janki K. Patel.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, J.K., Gohel, K., Patel, H. et al. Wheat Growth Dependent Succession of Culturable Endophytic Bacteria and Their Plant Growth Promoting Traits. Curr Microbiol 78, 4103–4114 (2021). https://doi.org/10.1007/s00284-021-02668-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02668-6

Navigation