Skip to main content

Advertisement

Log in

Endophytic Microbes from Diverse Wheat Genotypes and Their Potential Biotechnological Applications in Plant Growth Promotion and Nutrient Uptake

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Endophytic microbes residing inside the tissues of plants play a significant role to enhance the growth and health of plants by different plant growth-promoting mechanisms. In the present investigation, N2-fixing endophytic bacteria were isolated and characterized by plant growth. A total of one hundred fifty-nine endophytic bacteria were isolated from surface-sterilized roots and stem of different genotypes of wheat growing in the Divine Valley of Baru Sahib, Himachal Pradesh. The isolated bacterial endophytes were screened in vitro for plant growth-promoting attributes. Out of one hundred fifty-nine, thirteen endophytic bacteria were selected based on multifarious plant growth-promoting attributes. Among plant growth-promoting activities, hydrogen cyanide producers (19%) were higher when compared to siderophores producers (16%) and P-solubilizers (16%), ammonia producers (14%), K-solubilizers (14%), IAA producers (12%), Zn-solubilizers (5%), N2-fixers (2%) and biocontrol (2%). One of the isolates EU-B2RT.R1 demonstrated that a significant level of nitrogenase activity, P-solubilization and IAA production was identified as Acinetobacter guillouiae EU-B2RT.R1 based on 16S rRNA gene sequencing and BLAST analysis. Acinetobacter guillouiae EU-B2RT.R1, exhibiting multifarious beneficial traits, is further evaluated for plant growth promotion of wheat cultivar PBW 343+Lr24+GPC in pot experiment under greenhouse conditions. The Acinetobacter guillouiae EU-B2RT.R1 with multifarious plant growth-promoting activity has emerged as one of the efficient biofertilizers that need to be explored for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73. https://doi.org/10.7763/IJESD.2012.V3.191

    Article  Google Scholar 

  2. Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G et al (2016) Global change pressures on soils from land use and management. Glob Change Biol 22(3):1008–1028. https://doi.org/10.1111/gcb.13068

    Article  Google Scholar 

  3. Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914. https://doi.org/10.1139/m97-131

    Article  CAS  Google Scholar 

  4. Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Gr J Agric Sci 3(2):73–84. https://doi.org/10.15580/GJAS.2013.2.010313354

    Article  Google Scholar 

  5. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5(6):45–57. https://doi.org/10.7324/JABB.2017.50607

    Article  CAS  Google Scholar 

  6. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  7. Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  8. Rana KL, Kour D, Yadav AN (2019) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  9. Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y et al (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564. https://doi.org/10.1038/srep41564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z et al (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49(3):277–285. https://doi.org/10.1016/j.biocontrol.2009.02.007

    Article  Google Scholar 

  11. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: microbial interactions and agro-ecological impacts, vol 2. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Chapter  Google Scholar 

  12. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A et al (2015) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65(2):611–629. https://doi.org/10.1007/s13213-014-0897-9

    Article  Google Scholar 

  13. Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  14. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

    Article  CAS  PubMed  Google Scholar 

  15. Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43(1):51–56. https://doi.org/10.1007/s002840010259

    Article  CAS  PubMed  Google Scholar 

  16. Hu X, Chen J, Guo J (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22(9):983–990. https://doi.org/10.1007/s11274-006-9144-2

    Article  CAS  Google Scholar 

  17. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1):1–6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x

    Article  CAS  PubMed  Google Scholar 

  18. Salkowski E (1885) Ueber das Verhalten der Skatolcarbonsäure im Organismus. Z Physiol Chem 9(1):23–33. https://doi.org/10.1515/bchm1.1885.9.1.23

    Article  Google Scholar 

  19. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  21. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457. https://doi.org/10.1016/0038-0717(87)90037-X

    Article  CAS  Google Scholar 

  22. Cappucino J, Sherman N (1992) Nitrogen cycle. Microbiology: a laboratory manual, 4th edn. Benjamin/Cumming, New York, pp 311–312

    Google Scholar 

  23. Sijam K, Dikin A (2005) Biochemical and physiological characterization of Burkholderia cepacia as biological control agent. Int J Agric Biol 7(3):385–388

    Google Scholar 

  24. Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al. (2019) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. In: Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. https://doi.org/10.1007/s40011-019-01151-4

  25. Han SO, New P (1998) Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microb Ecol 36(2):193–201

    Article  CAS  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  27. Jorhem L, Engman J (2000) Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL1 collaborative study. J AOAC Int 83(5):1189–1203

    Article  CAS  Google Scholar 

  28. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11(6):217–218. https://doi.org/10.1016/S0168-9525(00)89052-6

    Article  CAS  PubMed  Google Scholar 

  29. Yadav AN, Sachan SG, Verma P, Saxena AK (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693. https://doi.org/10.1016/j.jbiosc.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  30. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17(19):7843–7853

    Article  CAS  Google Scholar 

  31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  32. Kumar G, Kanaujia N, Bafana A (2012) Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol Res 167(4):220–225. https://doi.org/10.1016/j.micres.2011.09.001

    Article  PubMed  Google Scholar 

  33. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26(7):1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  34. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55(3):415–424. https://doi.org/10.1007/s00248-007-9287-1

    Article  CAS  PubMed  Google Scholar 

  35. Botta AL, Santacecilia A, Ercole C, Cacchio P, Del Gallo M (2013) In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnol 30(6):666–674. https://doi.org/10.1016/j.nbt.2013.01.001

    Article  CAS  Google Scholar 

  36. Nishimura Y, Ino T, Iizuka H (1988) Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int J Syst Evol Microbiol 38(2):209–211. https://doi.org/10.1099/00207713-38-2-209

    Article  Google Scholar 

  37. Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb Ecol 58(4):952–964. https://doi.org/10.1007/s00248-009-9559-z

    Article  CAS  PubMed  Google Scholar 

  38. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899. https://doi.org/10.1007/s13213-014-1027-4

    Article  CAS  Google Scholar 

  39. Kang S-M, Joo G-J, Hamayun M, Na C-I, Shin D-H, Kim HY et al (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31(2):277–281. https://doi.org/10.1007/s10529-008-9867-2

    Article  CAS  PubMed  Google Scholar 

  40. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    Article  CAS  Google Scholar 

  41. Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z et al (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47(1):23–33

    Article  CAS  Google Scholar 

  42. Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2(5):a001446. https://doi.org/10.1101/cshperspect.a001446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khan Z, Doty SL (2009) Characterization of bacterial endophytes of sweet potato plants. Plant Soil 322(1–2):197–207. https://doi.org/10.1007/s11104-009-9908-1

    Article  CAS  Google Scholar 

  44. Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla J, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391. https://doi.org/10.1128/JB.186.16.5384-5391.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401

    Article  PubMed  PubMed Central  Google Scholar 

  46. Okujo N, Sakakibara Y, Yoshida T, Yamamoto S (1994) Structure of acinetoferrin, a new citrate-based dihydroxamate siderophore from Acinetobacter haemolyticus. Biometals 7(2):170–176. https://doi.org/10.1007/BF00140488

    Article  CAS  PubMed  Google Scholar 

  47. Penwell WF, DeGrace N, Tentarelli S, Gauthier L, Gilbert CM, Arivett BA et al (2015) Discovery and characterization of new hydroxamate siderophores, baumannoferrin A and B, produced by Acinetobacter baumannii. ChemBioChem 16(13):1896–1904. https://doi.org/10.1002/cbic.201500147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib and Department of Environment, Science & Technology (DEST), Shimla, Himachal Pradesh, India funded project “Development of Microbial Consortium as Bio-inoculants for Drought and Low Temperature Growing Crops for Organic Farming in Himachal Pradesh” for providing the facilities and financial support, to undertake the investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajar Nath Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement

The significance of present work is the isolation of nitrogen-fixing endophytic bacterium isolated from wheat, having huge potential role in plant growth promotion under in vitro condition and in future can be developed as nitrogen biofertilizers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, K.L., Kour, D., Kaur, T. et al. Endophytic Microbes from Diverse Wheat Genotypes and Their Potential Biotechnological Applications in Plant Growth Promotion and Nutrient Uptake. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 969–979 (2020). https://doi.org/10.1007/s40011-020-01168-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-020-01168-0

Keywords

Navigation