Skip to main content
Log in

Rhamnolipid production: effect of oxidative stress on virulence factors and proteome of Pseudomonas aeruginosa PA1

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Under specific environmental conditions, Pseudomonas aeruginosa produces a biodegradable surfactant rhamnolipid. Evidences suggest that this biosurfactant is involved in protecting cells against oxidative stress; however, the effects of oxidative stress on its production and other virulence factors are still unclear. Here we show that rhamnolipid production is dependent on the aeration surface when P. aeruginosa is cultured in shaken flasks, as well as in production of elastases and alkaline proteases. The production of alginate, lipase, and pyocyanin was not detected in our shaken-flask experiments. P. aeruginosa was treated with hydrogen peroxide to trigger its oxidative stress response, and the proteome profile was analyzed. We identified 14 proteins that were expressed differently between samples that were treated and not treated with peroxide; these proteins are potentially involved in the rhamnolipid production/secretion pathway and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508. doi:10.1007/s002530051648

    Article  CAS  Google Scholar 

  • Banat I, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L, Smyth T, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. doi:10.1007/s00253-010-2589-0

    Article  CAS  Google Scholar 

  • Baysse C, Cullinane M, Dénervaud V, Burrowes E, Dow JM, Morrissey JP, Tam L, Trevors JT, O'Gara F (2005) Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiol 151:2529–2542. doi:10.1099/mic.0.28185-0

    Article  CAS  Google Scholar 

  • Belaaouaj Aa, Kim KS, Shapiro SD (2000) Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 289:1185–1187. doi:10.1126/science.289.5482.1185

    Article  CAS  Google Scholar 

  • Bouffartigues E, Gicquel G, Bazire A, Fito-Boncompte L, Taupin L, Maillot O, Groboillot A, Poc-Duclairoir C, Orange N, Feuilloley M, Dufour A, Chevalier S (2011) The major outer membrane protein Oprf is required for rhamnolipid production in Pseudomonas aeruginosa. J Bacteriol Parasitol 2:1–5

    Article  Google Scholar 

  • Braga GUL, Messias CL, Vencovsky R (1994) Estimates of genetic parameters related to protease production by Metarhizium anisopliae. J Invertebr Pathol 64:6–12. doi:10.1006/jipa.1994.1061

    Article  CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  Google Scholar 

  • Calfee MW, Shelton JG, McCubrey JA, Pesci EC (2005) Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-produced surfactant. Infect Immun 73:878–882, 10.1128/IAI.73.2.878-882.2005

    Article  CAS  Google Scholar 

  • Castro-Ochoa LD, Rodríguez-Gómez C, Valerio-Alfaro G, Oliart Ros R (2005) Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme Microb Tech 37:648–654. doi:10.1016/j.enzmictec.2005.06.003

    Article  CAS  Google Scholar 

  • Charney J, Tomarelli RM (1947) A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171:501–505

    CAS  Google Scholar 

  • Deziel E, Gopalan S, Tampakaki AP, Lepine F, Padfield KE, Saucier M, Xiao G, Rahme LG (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55:998–1014. doi:10.1111/j.1365-2958.2004.04448.x

    Article  CAS  Google Scholar 

  • Eggers CT, Murray IA, Delmar VA, Day AG, Craik CS (2004) The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase. Biochem J 379:107–118

    Article  CAS  Google Scholar 

  • Essar DW, Eberly L, Hadero A, Crawford IP (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900

    CAS  Google Scholar 

  • Faulkner M, Helmann J (2011) Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. Antioxid Redox Sign 15:175–189

    Article  CAS  Google Scholar 

  • Fito-Boncompte L, Chapalain A, Bouffartigues E, Chaker H, Lesouhaitier O, Gicquel G, Bazire A, Madi A, Connil N, Véron W, Taupin L, Toussaint B, Cornelis P, Wei Q, Shioya K, Déziel E, Feuilloley MGJ, Orange N, Dufour A, Chevalier S (2011) Full Virulence of Pseudomonas aeruginosa Requires OprF. Infect Immun 79:1176–1186. doi:10.1128/iai.00850-10

    Article  CAS  Google Scholar 

  • Gambello MJ, Kaye S, Iglewski BH (1993) LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61:1180–1184

    CAS  Google Scholar 

  • Gilbert EJ, Cornish A, Jones CW (1991) Purification and properties of extracellular lipase from Pseudomonas aeruginosa EF2. J Gen Microbiol 137:2223–2229. doi:10.1099/00221287-137-9-2223

    Article  CAS  Google Scholar 

  • Hall A, Karplus PA, Poole LB (2009) Typical 2-Cys peroxiredoxins—structures, mechanisms and functions. FEBS J 276:2469–2477. doi:10.1111/j.1742-4658.2009.06985.x

    Article  CAS  Google Scholar 

  • Häussler S, Becker T (2008) The Pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 4:e1000166. doi:10.1371/journal.ppat.1000166

    Article  Google Scholar 

  • Henderson IR, Nataro JP (2001) Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243. doi:10.1128/iai.69.3.1231-1243.2001

    Article  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418. doi:doi:10.1146/annurev.micro.57.030502.090938

    Article  CAS  Google Scholar 

  • Jaouen T, Dé E, Chevalier S, Orange N (2004) Pore size dependence on growth temperature is a common characteristic of the major outer membrane protein OprF in psychrotrophic and mesophilic Pseudomonas species. Appl Environ Microbiol 70:6665–6669. doi:10.1128/aem.70.11.6665-6669.2004

    Article  CAS  Google Scholar 

  • Kim E-J, Sabra W, Zeng A-P (2003) Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiol 149:2627–2634. doi:10.1099/mic.0.26276-0

    Article  CAS  Google Scholar 

  • Kronemberger FA, Santa Anna LM, Fernandes AC, Menezes RR, Borges CP, Freire DM (2008) Oxygen-controlled biosurfactant production in a bench scale bioreactor. Appl Biochem Biotechnol 147:33–45. doi:10.1007/s12010-007-8057-3

    Article  CAS  Google Scholar 

  • Kurachi M (1958) Studies on the Biosynthesis of Pyocyanine. (II): Isolation and determination of pyocyanine. Bulletin of the Institute for Chemical Research, Kyoto University 36:174-187. http://ci.nii.ac.jp/naid/120001265999/en/

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lau GW, Britigan BE, Hassett DJ (2005) Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. Infect Immun 73:2550–2553. doi:10.1128/iai.73.4.2550-2553.2005

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas–liquid mass transfer in shake flasks. Biochem Eng J 17:155–167. doi:10.1016/s1369-703x(03)00174-8

    Article  CAS  Google Scholar 

  • May TB, Chakrabarty AM (1994) Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol 2:151–157. doi:10.1016/0966-842x(94)90664-5

    Article  CAS  Google Scholar 

  • Morici LA, Carterson AJ, Wagner VE, Frisk A, Schurr JR, zu Bentrup KH, Hassett DJ, Iglewski BH, Sauer K, Schurr MJ (2007) Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 189:7752–7764. doi:10.1128/jb.01797-06

    Article  CAS  Google Scholar 

  • Nakajima A, Hoshikawa M, Nakae T (1998) Antibiotic stress induces a large amount of outer membrane protein in Pseudomonas aeruginosa. FEMS Microbiol Lett 165:261–265. doi:10.1111/j.1574-6968.1998.tb13155.x

    Article  CAS  Google Scholar 

  • Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ (2000) Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, andahpC-ahpF. J Bacteriol 182:4533–4544. doi:10.1128/jb.182.16.4533-4544.2000

    Article  CAS  Google Scholar 

  • Panmanee W, Gomez F, Witte D, Pancholi V, Britigan BE, Hassett DJ (2008) The peptidoglycan-associated lipoprotein OprL helps protect a Pseudomonas aeruginosa mutant devoid of the transactivator OxyR from hydrogen peroxide-mediated killing during planktonic and biofilm culture. J Bacteriol 190:3658–3669. doi:10.1128/jb.00022-08

    Article  CAS  Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    CAS  Google Scholar 

  • Pham TH, Webb JS, Rehm BHA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiol 150:3405–3413. doi:10.1099/mic.0.27357-0

    Article  CAS  Google Scholar 

  • Rabilloud T, Charmont S (2000) Detection of proteins on two-dimensional electrophoresis gels. In: Rabilloud T (ed) Proteome research: two-dimensional gel electrophoresis and identification methods. Series: Principles and Practice. Springer Berlin, Heidelberg, pp 107–126. doi:10.1007/978-3-642-57105-3_5

    Chapter  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Progr 18:1277–1281. doi:10.1021/bp020071x

    Article  CAS  Google Scholar 

  • Ramsey DM, Wozniak DJ (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309–322. doi:10.1111/j.1365-2958.2005.04552.x

    Article  CAS  Google Scholar 

  • Reis RS, Rocha SLG, Chapeaurouge DA, Domont GB, Santa Anna LMM, Freire DMG, Perales J (2010) Effects of carbon and nitrogen sources on the proteome of Pseudomonas aeruginosa PA1 during rhamnolipid production. Process Biochem 45:1504–1510

    Article  CAS  Google Scholar 

  • Reis RS, Pereira AG, Neves BC, Freire DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa—a review. Bioresour Technol 102:6377–6384. doi:10.1016/j.biortech.2011.03.074

    Article  CAS  Google Scholar 

  • Robinson CE, Keshavarzian A, Pasco DS, Frommel TO, Winship DH, Holmes EW (1999) Determination of protein carbonyl groups by immunoblotting. Anal Biochem 266:48–57. doi:10.1006/abio.1998.2932

    Article  CAS  Google Scholar 

  • Sabra W, Kim E-J, Zeng A-P (2002) Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiol 148:3195–3202

    CAS  Google Scholar 

  • Santa Anna LM, Sebastian GV, Pereira N Jr, Alves TL, Menezes EP, Freire DM (2001) Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1. Appl Biochem Biotechnol 91–93:459–467

    Article  Google Scholar 

  • Santa Anna LM, Soriano AU, Gomes AC, Menezes EP, Gutarra MLE, Freire DMG, Pereira N Jr (2007) Use of biosurfactant in the removal of oil from contaminated sandy soil. J Chem Technol Biotechnol 82:687–691

    Article  Google Scholar 

  • Santos AS, Sampaio AP, Vasquez GS, Santa Anna LM, Pereira N Jr, Freire DM (2002) Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa. Appl Biochem Biotechnol 98–100:1025–1035

    Article  Google Scholar 

  • Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181. doi:10.1128/jb.183.24.7173-7181.2001

    Article  CAS  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725. doi:10.1007/s00253-005-0150-3

    Article  Google Scholar 

  • Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiol 140:569–576. doi:10.1099/00221287-140-3-569

    Article  CAS  Google Scholar 

  • Storz G, Imlayt JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194. doi:10.1016/s1369-5274(99)80033-2

    Article  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959-964. doi:http://www.nature.com/nature/journal/v406/n6799/suppinfo/406959a0_S1.html

    Google Scholar 

  • Vinckx T, Wei Q, Matthijs S, Cornelis P (2010) The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Microbiol 156:678–686. doi:10.1099/mic.0.031971-0

    Article  CAS  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191. doi:10.1016/j.mib.2009.01.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Cenpes/ Petrobras, the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) and IOC /PDTIS–Fiocruz for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Graziela Jardim Pacheco or Denise Maria Guimarães Freire.

Additional information

Authors Graziela Jardim Pacheco and Rodrigo Siqueira Reis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacheco, G.J., Reis, R.S., Fernandes, A.C.L.B. et al. Rhamnolipid production: effect of oxidative stress on virulence factors and proteome of Pseudomonas aeruginosa PA1. Appl Microbiol Biotechnol 95, 1519–1529 (2012). https://doi.org/10.1007/s00253-012-4258-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4258-y

Keywords

Navigation