Skip to main content
Log in

On objective functions of minimizing the vibration response of continuum structures subjected to external harmonic excitation

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This work deals with the topological design of vibrating continuum structures. The vibration of continuum structure is excited by time-harmonic external mechanical loading with prescribed frequency and amplitude. In comparison with well-known compliance minimization in static topology optimization, various objective functions are proposed in literature to minimize the response of vibrating structures, such as power flow, vibration transmission, and dynamic compliances, etc. Even for the dynamic compliance, different definitions are found in literature, which have quite different formulations and influences on the optimization results. The aim of this paper is to provide a comparison of these different objective functions and propose reference forms of objective functions for design optimization of vibration problems. Analytical solutions for two degrees of freedom system and topological design of plane structures in numerical examples are compared using different optimization formulations for given various excitation frequencies. The results are obtained by the finite element method and gradient based optimization using analytical sensitivity analysis. The optimized topologies and vibration response of the optimized structures are presented. The influence of excitation frequencies and the eigenfrequencies of the structure are discussed in the numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Allaire G (2002) Shape optimization by the homogenization method. Springer Verlag, New York

    Book  MATH  Google Scholar 

  • Allaire G, Aubry S, Jouve F (2001) Eigenfrequency optimization in optimal design. Comput Methods Appl Mech Eng 190(28):3565–3579

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Cheng G, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323

    Article  MathSciNet  MATH  Google Scholar 

  • Cherkaev A (2000) Variational methods for structural optimization. Springer Verlag, New York

    Book  MATH  Google Scholar 

  • Cremer L, Heckl M, Petersson BAT (2005) Structure-borne sound. Springer, Berlin

    Book  Google Scholar 

  • Diaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Du J, Olhoff N (2007a) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidiscip Optim 33(4–5):305–321

    Article  Google Scholar 

  • Du JB, Olhoff N (2007b) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389

    Article  Google Scholar 

  • Gardonio P, Elliott SJ (1998) Driving point and transfer mobility matrices for thin plates excited in flexure. In: ISVR technical report no 277. University of, Southampton

    Google Scholar 

  • Goyder HGD, White RG (1980) Vibrational power flow from machines into built-up structures, part I: introduction and approximate analyses of beam and plate-like foundations. J Sound Vib 68(1):59–75

    Article  MATH  Google Scholar 

  • Guo X, Cheng G-D (2010) Recent development in structural design and optimization. Acta Mech Sinica 26(6):807–823

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen JS (2007) Topology optimization of dynamics problems with Pade approximants. Int J Numer Methods Eng 72(13):1605–1630

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen JS (2011) Waves and vibrations in inhomogeneous structures - bandgaps and optimal designs. Technical University of Denmark, Lyngby

    Google Scholar 

  • Jog CS (2002) Topology design of stpuctures subjected to periodic loading. J Sound Vib 253(3):687–709

    Article  Google Scholar 

  • Jung J, Hyun J, Goo S, Wang S (2015) An efficient design sensitivity analysis using element energies for topology optimization of a frequency response problem. Comput Methods Appl Mech Eng 296:196–210

    Article  MathSciNet  Google Scholar 

  • Kang Z, Zhang X, Jiang S, Cheng G (2012) On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscip Optim 46(1):51–67

    Article  MathSciNet  MATH  Google Scholar 

  • Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72(4):535–563

    Article  MATH  Google Scholar 

  • Larsen AA, Laksafoss B, Jensen JS, Sigmund O (2009) Topological material layout in plates for vibration suppression and wave propagation control. Struct Multidiscip Optim 37(6):585–594

    Article  MathSciNet  MATH  Google Scholar 

  • Le C, Bruns TE, Tortorelli DA (2012) Material microstructure optimization for linear elastodynamic energy wave management. J Mech Phys Solids 60(2):351–378

    Article  MathSciNet  MATH  Google Scholar 

  • Liu H, Zhang W, Gao T (2015) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscip Optim 51(6):1321–1333

    Article  MathSciNet  Google Scholar 

  • Ma ZD, Kikuchi N, Hagiwara I (1993) Structural topology and shape optimization for a frequency-response problem. Comput Mech 13(3):157–174

    Article  MathSciNet  MATH  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological Design for Vibrating Structures. Comput Methods Appl Mech Eng 121(1–4):259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Min S, Kikuchi N, Park YC, Kim S, Chang S (1999) Optimal topology design of structures under dynamic loads. Struct Optim 17(2–3):208–218

    Google Scholar 

  • Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115–132

    Article  Google Scholar 

  • Olhoff N, Du JB (2006). Topological design optimization of vibrating structures. Cjk-Osm 4: the fourth China-Japan-Korea joint symposium on optimization of structural and mechanical systems. Kunming, China, November 6-9, 2006 G. D. Cheng, S. T. Liu and X. Guo (eds): 509–514

  • Olhoff N, Du J (2014). Topological design for minimum dynamic compliance of structures under forced vibration. Topology Optimization in Structural and Continuum Mechanics, 325-339. G. Rozvany and T. Lewiński. Springer, Heidelberg

  • Olhoff N, Du J (2016) Generalized incremental frequency method for topological designof continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency. Struct Multidiscip Optim 54(5):1113–1141

    Article  MathSciNet  Google Scholar 

  • Olhoff N, Niu B (2016) Minimizing the vibrational response of a lightweight building by topology and volume optimization of a base plate for excitatory machinery. Struct Multidiscip Optim 53(3):567–588

    Article  MathSciNet  Google Scholar 

  • Olhoff N, Niu B, Cheng G (2012) Optimum design of band-gap beam structures. Int J Solids Struct 49(22):3158–3169

    Article  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  • Rivin EI (2003) Passive vibration isolation. ASME Press, New York

    Book  Google Scholar 

  • Rivin EI (2010) Handbook on stiffness and damping in mechanical design. ASME Press, New York

    Book  Google Scholar 

  • Rozvany GIN, Lewiński T (2014) Topology optimization in structural and continuum mechanics. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252

    Article  Google Scholar 

  • Shu L, Wang MY, Fang Z, Ma Z, Wei P (2011) Level set based structural topology optimization for minimizing frequency response. J Sound Vib 330(24):5820–5834

    Article  Google Scholar 

  • Sigmund O (1994) Design of material structures using topology optimization. Technical University of Denmark, Lyngby

    Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc A Math Phys Eng Sci 361(1806):1001–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches - A comparative review. Struct Multidiscip Optim:1–25

  • Sun HL, Chen HB, Zhang K, Zhang PQ (2008) Research on performance indices of vibration isolation system. Appl Acoust 69(9):789–795

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Tartar L (2000) An introduction to the homogenization method in optimal design in optimal shape design (Troia, 1998). In: Cellina A, Ornelas A (eds) Lecture notes in mathematics, vol 1740. Springer, Berlin, pp 47–156

    Google Scholar 

  • Tavakoli R (2016) Optimal design of multiphase composites under elastodynamic loading. Comput Methods Appl Mech Eng 300:265–293

    Article  MathSciNet  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54(11):1605–1622

    Article  MATH  Google Scholar 

  • Tenek LH, Hagiwara I (1994) Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical-programming. JSME Int J Ser C 37(4):667–677

    Google Scholar 

  • Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Prob Eng 1(1):71–105

    Article  Google Scholar 

  • Wang J, Mak CM (2013) An indicator for the assessment of isolation performance of transient vibration. J Vib Control 19(16):2459–2468

    Article  Google Scholar 

  • Yi G, Youn BD (2016) A comprehensive survey on topology optimization of phononic crystals. Struct Multidiscip Optim 54(5):1315–1344

    Article  MathSciNet  Google Scholar 

  • Yoon GH (2010) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199(25–28):1744–1763

    Article  MathSciNet  MATH  Google Scholar 

  • Zargham S, Ward TA, Ramli R, Badruddin IA (2016) Topology optimization: a review for structural designs under vibration problems. Struct Multidiscip Optim 53(6):1157–1177

    Article  MathSciNet  Google Scholar 

  • Zhao J, Wang C (2016) Dynamic response topology optimization in the time domain using model reduction method. Struct Multidiscip Optim 53(1):101–114

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (no. 51505064, 51675082, 51790172, 51621064), and Natural Science Foundation of Liaoning Province (no. 2015020154), and Fundamental Research Funds for the Central Universities (DUT17ZD207). These supports are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, B., He, X., Shan, Y. et al. On objective functions of minimizing the vibration response of continuum structures subjected to external harmonic excitation. Struct Multidisc Optim 57, 2291–2307 (2018). https://doi.org/10.1007/s00158-017-1859-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1859-1

Keywords

Navigation