Skip to main content

Advertisement

Log in

Expansion of CD11b+Ly6Ghigh and CD11b+CD49d+ myeloid cells with suppressive potential in mice with chronic inflammation and light-at-night-induced circadian disruption

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Myeloid-derived suppressor cells (MDSCs) are important negative regulators of immune processes in cancer and other pathological conditions. We suggested that MDSCs play a key role in pathogenesis of chronic inflammation, which precedes and, to a certain extent, induces carcinogenesis. The present study aimed at investigation of MDSCs arising during chronic inflammation and light-at-night (LN)-induced stress, which is shown to accelerate chronic diseases.

Subjects

67 CD-1 mice and in vitro MDSC cultures.

Treatment

Adjuvant arthritis was induced by a subdermal injection of complete Freund’s adjuvant. LN was induced by illumination of 750 lx at night.

Methods

Flow cytometry for evaluation of cell phenotypes and MTT standard test for cell proliferation were used.

Results

Increased levels of splenic CD11b+Ly6Ghigh and CD11b+CD49d+ myeloid cells possessing suppressive potential in mice with adjuvant arthritis are shown. LN amplifies the process of CD11b+Ly6Ghigh expansion in mice with adjuvant arthritis. Expression of CD62L and CD195 is elevated on the myeloid cells during exposure to LN.

Conclusions

Our study raises the possibility that CD11b+Ly6Ghigh and CD11b+CD49d+ MDSCs play an important role in the induction of immunosuppressive environment typical for chronic inflammation. Also, LN can affect immune responses during chronic inflammation through recruitment of MDSCs from the bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

Arg-1:

Arginase-1

α-SMA:

Alpha-smooth muscle actin

ConA:

Concanavalin A

EDTA:

Ethylenediaminetetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

FITC:

Fluorescein isothiocyanate

IFN-γ:

Interferon gamma

IL:

Interleukin

iNOS:

Nitric oxide synthases

LPS:

Lipopolysaccharide

MDSC:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NO:

Nitric oxide

PE:

Phycoerythrin

PerCP:

Peridinin chlorophyll protein complex

ROS:

Reactive oxygen species

TCR:

T cell receptor,

TGF-β:

Transforming growth factor beta

TLR:

Toll-like receptors

TNF-α:

Tumor necrosis factor alpha

VEGF:

Vascular endothelial growth factor

CFSE:

5(6)-Carboxyfluorescein diacetate N-succinimidyl ester

References

  1. Norling LV, Serhan CN. Profiling in resolving inflammatory exudates identifies novel anti-inflammatory and pro-resolving mediators and signals for termination. J Intern Med. 2010;268(1):15–24. doi:10.1111/j.1365-2796.2010.02235.x.

    CAS  PubMed  Google Scholar 

  2. Khatami M. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases. Cell Biochem Biophys. 2009;55(2):55–79. doi:10.1007/s12013-009-9059-2.

    Article  CAS  PubMed  Google Scholar 

  3. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185. doi:10.1155/2014/149185.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vojdani A. A potential link between environmental triggers and autoimmunity. Autoimmune Dis. 2014;2014:437231. doi:10.1155/2014/437231.

    PubMed  PubMed Central  Google Scholar 

  5. Wellen KE, Hotamisligil GS. Inflammation, stress and diabetes. J Clin Investig. 2005;115(5):1111–9. doi:10.1172/JCI25102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Popovich IG, Zabezhinski MA, Panchenko AV, Piskunova TS, Semenchenko AV, Tyndyk ML, et al. Exposure to light at night accelerates aging and spontaneous uterine carcinogenesis in female 129/Sv mice. Cell Cycle. 2013;12(11):1785–90. doi:10.4161/cc.24879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Filipski E, Delaunay F, King VM, Wu MW, Claustrat B, Grechez-Cassiau A, et al. Effects of chronic jet lag on tumor progression in mice. Cancer Res. 2004;64(21):7879–85. doi:10.1158/0008-5472.CAN-04-0674.

    Article  CAS  PubMed  Google Scholar 

  8. Lin GJ, Huang SH, Chen SJ, Wang CH, Chang DM, Sytwu HK. Modulation by melatonin of the pathogenesis of inflammatory autoimmune diseases. Int J Mol Sci. 2013;14(6):11742–66. doi:10.3390/ijms140611742.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anisimov VN, Vinogradova IA, Panchenko AV, Popovich IG, Zabezhinski MA. Light-at-night-induced circadian disruption, cancer and aging. Curr Aging Sci. 2012;5(3):170–7.

    Article  PubMed  Google Scholar 

  10. Gale JE, Cox HI, Qian J, Block GD, Colwell CS, Matveyenko AV. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J Biol Rhythm. 2011;26(5):423–33. doi:10.1177/0748730411416341.

    Article  Google Scholar 

  11. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010;185(10):5796–805. doi:10.4049/jimmunol.1001026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis. 2009;51(4):294–302. doi:10.1016/j.pcad.2008.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Follett H, Kales A, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endoc Metab. 2004;89(5):2119–26. doi:10.1210/jc.2003-031562.

    Article  CAS  Google Scholar 

  14. Shearer WT, Reuben JM, Mullington JM, Price NJ, Lee BN, Smith EO, et al. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol. 2001;107(1):165–70. doi:10.1067/mai.2001.112270.

    Article  CAS  PubMed  Google Scholar 

  15. Meier-Ewert HK, Ridker PM, Rifai N, Regan MM, Price NJ, Dinges DF, et al. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol. 2004;43(4):678–83. doi:10.1016/j.jacc.2003.07.050.

    Article  CAS  PubMed  Google Scholar 

  16. Fonken LK, Lieberman RA, Weil ZM, Nelson RJ. Dim light at night exaggerates weight gain and inflammation associated with a high-fat diet in male mice. Endocrinology. 2013;154(10):3817–25. doi:10.1210/en.2013-1121.

    Article  CAS  PubMed  Google Scholar 

  17. Hashiramoto A, Yamane T, Tsumiyama K, Yoshida K, Komai K, Yamada H, et al. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. J Immunol. 2010;184(3):1560–5. doi:10.4049/jimmunol.0903284.

    Article  CAS  PubMed  Google Scholar 

  18. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45. doi:10.1016/S0140-6736(00)04046-0.

    Article  CAS  PubMed  Google Scholar 

  19. Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010;22(2):238–44. doi:10.1016/j.coi.2010.01.021.

    Article  CAS  PubMed  Google Scholar 

  20. Ribechini E, Greifenberg V, Sandwick S, Lutz MB. Subsets, expansion and activation of myeloid-derived suppressor cells. Med Microbiol Immun. 2010;199(3):273–81. doi:10.1007/s00430-010-0151-4.

    Article  CAS  Google Scholar 

  21. Haile LA, Gamrekelashvili J, Manns MP, Korangy F, Greten TF. CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol. 2010;185(1):203–10. doi:10.4049/jimmunol.0903573.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao F, Hoechst B, Duffy A, Gamrekelashvili J, Fioravanti S, Manns MP, et al. S100A9 a new marker for monocytic human myeloid-derived suppressor cells. Immunology. 2012;136(2):176–83. doi:10.1111/j.1365-2567.2012.03566.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40(11):2969–75. doi:10.1002/eji.201040895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Talmadge JE. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res. 2007;13(18 Pt 1):5243–8. doi:10.1158/1078-0432.CCR-07-0182.

    Article  CAS  PubMed  Google Scholar 

  25. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12(4):253–68. doi:10.1038/nri3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 2008;68(13):5439–49. doi:10.1158/0008-5472.CAN-07-6621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66(2):1123–31. doi:10.1158/0008-5472.CAN-05-1299.

    Article  CAS  PubMed  Google Scholar 

  28. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S. Myeloid-derived suppressor cells down-regulate l-selectin expression on CD4+ and CD8+ T cells. J Immunol. 2009;183(2):937–44. doi:10.4049/jimmunol.0804253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katoh H, Watanabe M. Myeloid-derived suppressor cells and therapeutic strategies in cancer. Mediat Inflamm. 2015;2015:159269. doi:10.1155/2015/159269.

    Article  Google Scholar 

  30. Ray A, Chakraborty K, Ray P. Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation. Front Cel Infect Microbiol. 2013;3:52. doi:10.3389/fcimb.2013.00052.

    Google Scholar 

  31. Hochst B, Mikulec J, Baccega T, Metzger C, Welz M, Peusquens J, et al. Differential induction of Ly6G and Ly6C positive myeloid derived suppressor cells in chronic kidney and liver inflammation and fibrosis. PLoS One. 2015;10(3):e0119662. doi:10.1371/journal.pone.0119662.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007;13(7):828–35. doi:10.1038/nm1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM, et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology. 2008;135(3):871–81. doi:10.1053/j.gastro.2008.06.032.

    Article  CAS  PubMed  Google Scholar 

  34. Ioannou M, Alissafi T, Lazaridis I, Deraos G, Matsoukas J, Gravanis A, et al. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol. 2012;188(3):1136–46. doi:10.4049/jimmunol.1101816.

    Article  CAS  PubMed  Google Scholar 

  35. Chou HS, Hsieh CC, Charles R, Wang L, Wagner T, Fung JJ, et al. Myeloid-derived suppressor cells protect islet transplants by B7-H1 mediated enhancement of T regulatory cells. Transplantation. 2012;93(3):272–82. doi:10.1097/TP.0b013e31823ffd39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guan Q, Moreno S, Qing G, Weiss CR, Lu L, Bernstein CN, et al. The role and potential therapeutic application of myeloid-derived suppressor cells in TNBS-induced colitis. J Leukocyte Biol. 2013;94(4):803–11. doi:10.1189/jlb.0113050.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang R, Ito S, Nishio N, Cheng Z, Suzuki H, Isobe KI. Dextran sulphate sodium increases splenic Gr1+CD11b+ cells which accelerate recovery from colitis following intravenous transplantation. Clin Exp Immunol. 2011;164(3):417–27. doi:10.1111/j.1365-2249.2011.04374.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M. Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity. 2013;38(3):541–54. doi:10.1016/j.immuni.2013.02.007.

    Article  CAS  PubMed  Google Scholar 

  39. Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A, et al. TCR zeta down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol. 2006;177(7):4763–72.

    Article  CAS  PubMed  Google Scholar 

  40. Vaknin I, Blinder L, Wang L, Gazit R, Shapira E, Genina O, et al. A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood. 2008;111(3):1437–47. doi:10.1182/blood-2007-07-100404.

    Article  CAS  PubMed  Google Scholar 

  41. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182(8):4499–506. doi:10.4049/jimmunol.0802740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA. 2011;108(41):17111–6. doi:10.1073/pnas.1108121108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Philippe L, Gegout-Pottie P, Guingamp C, Bordji K, Terlain B, Netter P, et al. Relations between functional, inflammatory, and degenerative parameters during adjuvant arthritis in rats. Am J Physiol. 1997;273(4 Pt 2):R1550–6.

    CAS  PubMed  Google Scholar 

  44. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol. 2010;594:57–72. doi:10.1007/978-1-60761-411-1_4.

    Article  CAS  PubMed  Google Scholar 

  45. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L. Cell viability assays. In: Sittampalam GS, Coussens NP, Brimacombe K, et al., editors. Assay guidance manual. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2013. https://www.ncbi.nlm.nih.gov/books/NBK144065/.

  46. Berridge MV, Tan AS, McCoy KD, Wang R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica. 1996;4:14–9.

    Google Scholar 

  47. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150. doi:10.1038/ncomms12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang C, Lei GS, Shao S, Jung HW, Durant PJ, Lee CH. Accumulation of myeloid-derived suppressor cells in the lungs during Pneumocystis pneumonia. Infect Immun. 2012;80(10):3634–41. doi:10.1128/IAI.00668-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goni O, Alcaide P, Fresno M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G+Gr1+CD11b+ immature myeloid suppressor cells. Int Immunol. 2002;14(10):1125–34.

    Article  CAS  PubMed  Google Scholar 

  50. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74. doi:10.1038/nri2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heim CE, Vidlak D, Scherr TD, Kozel JA, Holzapfel M, Muirhead DE, et al. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol. 2014;192(8):3778–92. doi:10.4049/jimmunol.1303408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cripps JG, Gorham JD. MDSC in autoimmunity. Int Immunopharmacol. 2011;11(7):789–93. doi:10.1016/j.intimp.2011.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. doi:10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  54. Wiercinska-Drapalo A, Flisiak R, Prokopowicz D. Effects of ulcerative colitis activity on plasma and mucosal prostaglandin E2 concentration. Prostag Oth Lipid M. 1999;58(2–4):159–65.

    Article  CAS  Google Scholar 

  55. Jung SA, Chung YH, Park NH, Lee SS, Kim JA, Yang SH, et al. Experimental model of hepatic fibrosis following repeated periportal necrosis induced by allylalcohol. Scand J Gastroenter. 2000;35(9):969–75.

    Article  CAS  Google Scholar 

  56. Han G, Li F, Singh TP, Wolf P, Wang XJ. The proinflammatory role of TGFbeta1: a paradox? Int J Biol Sci. 2012;8(2):228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Massague J. TGFbeta in Cancer. Cell. 2008;134(2):215–30. doi:10.1016/j.cell.2008.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 2003;198(11):1741–52. doi:10.1084/jem.20022227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Young MR, Wright MA, Matthews JP, Malik I, Prechel M. Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J Immun. 1996;156(5):1916–22.

    CAS  PubMed  Google Scholar 

  60. Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immun. 2009;182(1):240–9.

    Article  CAS  PubMed  Google Scholar 

  61. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immun. 2010;10(8):554–67. doi:10.1038/nri2808.

    Article  CAS  Google Scholar 

  62. Kim R, Emi M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and proinflammatory responses. Cancer Biol Ther. 2005;4(9):924–33.

    Article  CAS  PubMed  Google Scholar 

  63. Fonken LK, Weil ZM, Nelson RJ. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain Behav Immun. 2013;34:159–63. doi:10.1016/j.bbi.2013.08.011.

    Article  CAS  PubMed  Google Scholar 

  64. Houghtling RA, Bayer BM. Rapid elevation of plasma interleukin-6 by morphine is dependent on autonomic stimulation of adrenal gland. J Pharmacol Exp Ther. 2002;300(1):213–9.

    Article  CAS  PubMed  Google Scholar 

  65. Judd LM, Call GB, Barney M, McIlmoil CJ, Balls AG, Adams A, Oliveira GK. Possible function of IL-6 and TNF as intraadrenal factors in the regulation of adrenal steroid secretion. Ann NY Acad Sci. 2000;917:628–37.

    Article  CAS  PubMed  Google Scholar 

  66. Päth G, Scherbaum WA, Bornstein SR. The role of interleukin-6 in the human adrenal gland. Eur J Clin Invest. 2000;30(3):91–5.

    Article  PubMed  Google Scholar 

  67. Bethin KE, Vogt SK, Muglia LJ. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. PNAS. 2000;97(16):9317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Humphreys D, Schlesinger L, Lopez M, Araya AV. Interleukin-6 production and deregulation of the hypothalamic–pituitary–adrenal axis in patients with major depressive disorders. Endocrine. 2006;30(3):371–6.

    Article  CAS  PubMed  Google Scholar 

  69. Reiter RJ. Melatonin: the chemical expression of darkness. Mol Cell Endocrinol. 1991;79(1–3):C153–8.

    Article  CAS  PubMed  Google Scholar 

  70. Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94–106. doi:10.1016/j.lfs.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  71. Vinther AG, Claesson MH. The influence of melatonin on the immune system and cancer. Ugeskr Laeger. 2015;177(21):V10140568.

    PubMed  Google Scholar 

  72. Chahbouni M, Escames G, Venegas C, Sevilla B, Garcia JA, Lopez LC, et al. Melatonin treatment normalizes plasma proinflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J Pin Res. 2010;48(3):282–9. doi:10.1111/j.1600-079X.2010.00752.x.

    Article  CAS  Google Scholar 

  73. Permpoonputtana K, Govitrapong P. The anti-inflammatory effect of melatonin on methamphetamine-induced proinflammatory mediators in human neuroblastoma dopamine SH-SY5Y cell lines. Neurotox Res. 2013;23(2):189–99. doi:10.1007/s12640-012-9350-7.

    Article  CAS  PubMed  Google Scholar 

  74. Calvo JR, Gonzalez-Yanes C, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review. J Pin Res. 2013;55(2):103–20. doi:10.1111/jpi.12075.

    Article  CAS  Google Scholar 

  75. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007;67(20):10019–26. doi:10.1158/0008-5472.CAN-07-2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen MF, Kuan FC, Yen TC, Lu MS, Lin PY, Chung YH, et al. IL-6-stimulated CD11b+ CD14+ HLA-DR-myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus. Oncotarget. 2014;5(18):8716–28. doi:10.18632/oncotarget.2368.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Raffler NA, Rivera-Nieves J, Ley K. L-selectin in inflammation, infection and immunity. Drug Discov Today Ther Strateg. 2005;2(3):213–20. doi:10.1016/j.ddstr.2005.08.012.

    Article  Google Scholar 

  78. Weber C, Weber KS, Klier C, Gu S, Wank R, Horuk R, Nelson PJ. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T(H)1-like/CD45RO(+) T cells. Blood. 2001;97:1144–6.

    Article  CAS  PubMed  Google Scholar 

  79. Méndez-Ferrera S, Chowa A, Merada M, Frenette PS. Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol. 2009;16:235–42. doi:10.1097/MOH.0b013e32832bd0f5.

    Article  Google Scholar 

  80. Scheiermann Ch, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol. 2013;13:191–8. doi:10.1038/nri3386.

    Article  Google Scholar 

  81. Huo M, Huang Y, Qu D, Zhang H, Wong WT, Chawla A, Huang Y, Tian XY. Myeloid Bmal1 deletion increases monocyte recruitment and worsens atherosclerosis. FASEB J. 2017;31(3):1097–106. doi:10.1096/fj.201601030R.

    Article  CAS  PubMed  Google Scholar 

  82. Rahman SA, Castanon-Cervantes O, Scheer FA, Shea SA, Czeisler CA, Davidson AJ, Lockley SW. Endogenous circadian regulation of proinflammatory cytokines and chemokines in the presence of bacterial lipopolysaccharide in humans. Brain Behav Immun. 2015;47:4–13. doi:10.1016/j.bbi.2014.11.003.

    Article  CAS  PubMed  Google Scholar 

  83. Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, Farrow SN, Else KJ, Singh D, Ray DW, Loudon AS. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA. 2012;109(2):582–7. doi:10.1073/pnas.1106750109.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant 5586GF4 “Role of Myeloid derived suppressor cells (MDSC) in the process of chronic inflammation, associated with aging” 0115PK01133 of Science Committee of Ministry of education and science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliya V. Perfilyeva.

Ethics declarations

All experiments were carried out in compliance with the Guide for Care and Use of Laboratory Animals and approved by the Ethical Committee of Research Institute of Cardiology and Internal Diseases, Almaty, Kazakhstan.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Mauro Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perfilyeva, Y.V., Abdolla, N., Ostapchuk, Y.O. et al. Expansion of CD11b+Ly6Ghigh and CD11b+CD49d+ myeloid cells with suppressive potential in mice with chronic inflammation and light-at-night-induced circadian disruption. Inflamm. Res. 66, 711–724 (2017). https://doi.org/10.1007/s00011-017-1052-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1052-4

Keywords

Navigation