Skip to main content

Myeloid-Derived Suppressor Cells (MDSCs) in Aged Mice: Focus on Inflammation

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

As people get older, the homeostatic functions of many systems in the body like the immune system decline, which contributes to increase susceptibility to disease. The bone marrow of healthy individuals continually generates myeloid cells, which differentiate into mature cells like granulocytes, macrophages, or dendritic cells. However, under inflammatory conditions, there is an increased frequency of immature myeloid cells that can suppress T cell responses in peripheral secondary lymph organs in both human and murine hosts. The heterogeneous population of cells known as myeloid-derived suppressor cells (MDSCs), consisting of myeloid progenitors and immature myeloid cells, share a biological function: immunosuppression. This chapter reviews novel findings in mice about the nature of MDSCs and, in this context, discusses current knowledge about these cells during the aging process. MDSCs may have an important role in the regulation of the immune response during aging. MDSC dysfunction in aged mice may compromise the innate and adaptive immune systems, and thus understanding their role during aging may be useful for potential future therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alignani D, Maletto B, Liscovsky M, Ropolo A, Moron G, Pistoresi-Palencia MC (2005) Orally administered OVA/CpG-ODN induces specific mucosal and systemic immune response in young and aged mice. J Leukoc Biol 77:898–905

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Rodriguez L, Lopez-Hoyos M, Munoz-Cacho P, Martinez-Taboada VM (2012) Aging is associated with circulating cytokine dysregulation. Cell Immunol 273:124–132

    Article  PubMed  CAS  Google Scholar 

  • Appay V, Sauce D (2014) Naive T cells: the crux of cellular immune aging? Exp Gerontol 54:90–93

    Article  PubMed  CAS  Google Scholar 

  • Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107:5465–5470

    Article  PubMed  PubMed Central  Google Scholar 

  • Bingisser RM, Tilbrook PA, Holt PG, Kees UR (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160:5729–5734

    PubMed  CAS  Google Scholar 

  • Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56:739–745

    Article  PubMed  Google Scholar 

  • Boren E, Gershwin ME (2004) Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev 3:401–406

    Article  PubMed  CAS  Google Scholar 

  • Boros P, Ochando J, Zeher M (2016) Myeloid derived suppressor cells and autoimmunity. Hum Immunol 77:631–636

    Article  PubMed  CAS  Google Scholar 

  • Bowdish DM (2013) Myeloid-derived suppressor cells, age and cancer. Oncoimmunology 2:e24754

    Article  PubMed  PubMed Central  Google Scholar 

  • Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, Segal DM, Staib C, Lowel M, Sutter G, Colombo MP, Zanovello P (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278

    Article  PubMed  CAS  Google Scholar 

  • Bueno V, Sant’Anna OA, Lord JM (2014) Ageing and myeloid-derived suppressor cells: possible involvement in immunosenescence and age-related disease. Age (Dordr) 36:9729

    Article  CAS  Google Scholar 

  • Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290

    Article  PubMed  CAS  Google Scholar 

  • Bunt SK, Clements VK, Hanson EM, Sinha P, Ostrand-Rosenberg S (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through toll-like receptor 4. J Leukoc Biol 85:996–1004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Challen GA, Boles NC, Chambers SM, Goodell MA (2010) Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 6:265–278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24:309–320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111:5553–5561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chornoguz O, Grmai L, Sinha P, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S (2011) Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis. Mol Cell Proteomics 10:M110.002980

    Article  PubMed  CAS  Google Scholar 

  • Condamine T, Gabrilovich DI (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 32:19–25

    Article  PubMed  CAS  Google Scholar 

  • Condamine T, Mastio J, Gabrilovich DI (2015) Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol 98:913–922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crook KR, Liu P (2014) Role of myeloid-derived suppressor cells in autoimmune disease. World J Immunol 4:26–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM, Heyworth PG, Efron PA, Moldawer LL (2011) A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 17:281–292

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Chen Y, Wang HY, Wang RF (2014) Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 10:3270–3285

    Article  PubMed  Google Scholar 

  • Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O’Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, Swan R, Chung CS, Atkinson MA, Ramphal R, Gabrilovich DI, Reeves WH, Ayala A, Phillips J, Laface D, Heyworth PG, Clare-Salzler M, Moldawer LL (2007) MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204:1463–1474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dykstra B, Kent D, Bowie M, Mccaffrey L, Hamilton M, Lyons K, Lee SJ, Brinkman R, Eaves C (2007) Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:218–229

    Article  PubMed  CAS  Google Scholar 

  • Dykstra B, Olthof S, Schreuder J, Ritsema M, De Haan G (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208:2691–2703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN, Vosshenrich CA (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40:3347–3357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enioutina EY, Bareyan D, Daynes RA (2011) A role for immature myeloid cells in immune senescence. J Immunol 186:697–707

    Article  PubMed  CAS  Google Scholar 

  • Forghani P, Waller EK (2015) Poly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancer. Breast Cancer Res Treat 153:21–30

    Article  PubMed  CAS  Google Scholar 

  • Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9

    Article  PubMed  Google Scholar 

  • Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    Article  CAS  PubMed  Google Scholar 

  • Fujii W, Ashihara E, Hirai H, Nagahara H, Kajitani N, Fujioka K, Murakami K, Seno T, Yamamoto A, Ishino H, Kohno M, Maekawa T, Kawahito Y (2013) Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol 191:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016a) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17:147–157

    Article  PubMed  CAS  Google Scholar 

  • Fulop T, Dupuis G, Witkowski JM, Larbi A (2016b) The role of Immunosenescence in the development of age-related diseases. Rev Investig Clin 68:84–91

    CAS  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116:2777–2790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geiger H, De Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389

    Article  PubMed  CAS  Google Scholar 

  • Gerstorf D, Bertram L, Lindenberger U, Pawelec G, Demuth I, Steinhagen-Thiessen E, Wagner GG (2016) Editorial. Gerontology 62:311–315

    Article  PubMed  Google Scholar 

  • Greifenberg V, Ribechini E, Rossner S, Lutz MB (2009) Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol 39:2865–2876

    Article  PubMed  CAS  Google Scholar 

  • Grizzle WE, Xu X, Zhang S, Stockard CR, Liu C, Yu S, Wang J, Mountz JD, Zhang HG (2007) Age-related increase of tumor susceptibility is associated with myeloid-derived suppressor cell mediated suppression of T cell cytotoxicity in recombinant inbred BXD12 mice. Mech Ageing Dev 128:672–680

    Article  PubMed  CAS  Google Scholar 

  • Hanagata N (2012) Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine 7:2181–2195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate l-selectin expression on CD4+ and CD8+ T cells. J Immunol 183:937–944

    Article  PubMed  CAS  Google Scholar 

  • Harari O, Liao JK (2004) Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des 10:893–898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harman MF, Ranocchia RP, Gorlino CV, Sanchez Vallecillo MF, Castell SD, Crespo MI, Maletto BA, Moron G, Pistoresi-Palencia MC (2015) Expansion of myeloid-derived suppressor cells with arginase activity lasts longer in aged than in young mice after CpG-ODN plus IFA treatment. Oncotarget 6:13448–13461

    Article  PubMed  PubMed Central  Google Scholar 

  • Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21:4147

    Article  CAS  Google Scholar 

  • Heithoff DM, Enioutina EY, Bareyan D, Daynes RA, Mahan MJ (2008) Conditions that diminish myeloid-derived suppressor cell activities stimulate cross-protective immunity. Infect Immun 76:5191–5199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herlihy SE, Starke HE, Lopez-Anton M, Cox N, Keyhanian K, Fraser DJ, Gomer RH (2016) Peritoneal Dialysis fluid and some of its components potentiate fibrocyte differentiation. Perit Dial Int 36:367–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurez V, Daniel BJ, Sun L, Liu AJ, Ludwig SM, Kious MJ, Thibodeaux SR, Pandeswara S, Murthy K, Livi CB, Wall S, Brumlik MJ, Shin T, Zhang B, Curiel TJ (2012) Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res 72:2089–2099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackaman C, Nelson DJ (2014) Are macrophages, myeloid derived suppressor cells and neutrophils mediators of local suppression in healthy and cancerous tissues in aging hosts? Exp Gerontol 54:53–57

    Article  PubMed  CAS  Google Scholar 

  • Jia W, Jackson-Cook C, Graf MR (2010) Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma + vaccination model. J Neuroimmunol 223:20–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennedy DE, Knight KL (2015) Inhibition of B Lymphopoiesis by adipocytes and IL-1-producing myeloid-derived suppressor cells. J Immunol 195:2666–2674

    Article  PubMed  CAS  Google Scholar 

  • Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB (2008) Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun 31:354–361

    Article  PubMed  CAS  Google Scholar 

  • Klinman DM (2006) Adjuvant activity of CpG oligodeoxynucleotides. Int Rev Immunol 25:135–154

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liscovsky MV, Ranocchia RP, Alignani DO, Gorlino CV, Moron G, Maletto BA, Pistoresi-Palencia MC (2011) CpG-ODN+IFN-gamma confer pro-and anti-inflammatory properties to peritoneal macrophages in aged mice. Exp Gerontol 46:462–467

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zhang C, Lu H, Cai J, Wang Z, Chen J, Liu F, Wu Z, Liu X, Sun W (2011) Poly(I:C) induce bone marrow precursor cells into myeloid-derived suppressor cells. Mol Cell Biochem 358:317–323

    Article  PubMed  CAS  Google Scholar 

  • Maletto BA, Gruppi A, Moron G, Pistoresi-Palencia MC (1996) Age-associated changes in lymphoid and antigen-presenting cell functions in mice immunized with Trypanosoma cruzi antigens. Mech Ageing Dev 88:39–47

    Article  PubMed  CAS  Google Scholar 

  • Maletto B, Ropolo A, Moron V, Pistoresi-Palencia MC (2002) CpG-DNA stimulates cellular and humoral immunity and promotes Th1 differentiation in aged BALB/c mice. J Leukoc Biol 72:447–454

    PubMed  CAS  Google Scholar 

  • Maletto BA, Ropolo AS, Liscovsky MV, Alignani DO, Glocker M, Pistoresi-Palencia MC (2005) CpG oligodeoxinucleotides functions as an effective adjuvant in aged BALB/c mice. Clin Immunol 117:251–261

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  PubMed  CAS  Google Scholar 

  • Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L (2009) T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol 30:301–305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Brüning JC (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity- associated resistance to insulin. Nat Immunol 15:423–430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meirow Y, Kanterman J, Baniyash M (2015) Paving the road to tumor development and spreading: myeloid-derived suppressor cells are ruling the fate. Front Immunol 6:523

    Article  PubMed  PubMed Central  Google Scholar 

  • Moline-Velazquez V, Cuervo H, Vila-Del Sol V, Ortega MC, Clemente D, De Castro F (2011) Myeloid-derived suppressor cells limit the inflammation by promoting T lymphocyte apoptosis in the spinal cord of a murine model of multiple sclerosis. Brain Pathol 21:678–691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Montes CL, Maletto BA, Acosta Rodriguez EV, Gruppi A, Pistoresi-Palencia MC (2006) B cells from aged mice exhibit reduced apoptosis upon B-cell antigen receptor stimulation and differential ability to up-regulate survival signals. Clin Exp Immunol 143:30–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morecki S, Gelfand Y, Yacovlev E, Eizik O, Shabat Y, Slavin S (2008) CpG-induced myeloid CD11b+Gr-1+ cells efficiently suppress T cell-mediated immunoreactivity and graft-versus-host disease in a murine model of allogeneic cell therapy. Biol Blood Marrow Transplant 14:973–984

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Ema H, Nakauchi H (2010) Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 207:1173–1182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller-Sieburg CE, Cho RH, Karlsson L, Huang JF, Sieburg HB (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103:4111–4118

    Article  PubMed  CAS  Google Scholar 

  • Mutwiri G, Van Drunen Littel-Van Den Hurk S, Babiuk LA (2009) Approaches to enhancing immune responses stimulated by CpG oligodeoxynucleotides. Adv Drug Deliv Rev 61:226–232

    Article  PubMed  CAS  Google Scholar 

  • Ost M, Singh A, Peschel A, Mehling R, Rieber N, Hartl D (2016) Myeloid-derived suppressor cells in bacterial infections. Front Cell Infect Microbiol 6:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012a) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P, Chornoguz O, Ecker C (2012b) Regulating the suppressors: apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). Cancer Immunol Immunother 61:1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A 108:20012–20017

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S, Bronte V (2010) Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 22:238–244

    Article  PubMed  CAS  Google Scholar 

  • Pyzer AR, Cole L, Rosenblatt J, Avigan DE (2016) Myeloid-derived suppressor cells as effectors of immune suppression in cancer. Int J Cancer 139:1915–1926

    Article  PubMed  CAS  Google Scholar 

  • Qualls JE, Neale G, Smith AM, Koo MS, Defreitas AA, Zhang H, Kaplan G, Watowich SS, Murray PJ (2010) Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling. Sci Signal 3:ra62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranocchia RP, Gorlino CV, Crespo MI, Harman MF, Liscovsky MV, Moron G, Maletto BA, Pistoresi-Palencia MC (2012) Arginase-dependent suppression by CpG-ODN plus IFA-induced splenic myeloid CD11b(+)Gr1(+) cells. Immunol Cell Biol 90:710–721

    Article  PubMed  CAS  Google Scholar 

  • Ray A, Chakraborty K, Ray P (2013) Immunosuppressive MDSCs induced by TLR signaling during infection and role in resolution of inflammation. Front Cell Infect Microbiol 3:52

    Google Scholar 

  • Rieber N, Brand A, Hector A, Graepler-Mainka U, Ost M, Schafer I, Wecker I, Neri D, Wirth A, Mays L, Zundel S, Fuchs J, Handgretinger R, Stern M, Hogardt M, Doring G, Riethmuller J, Kormann M, Hartl D (2013) Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol 190:1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, Parmiani G (2002) Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 188:97–113

    Article  PubMed  CAS  Google Scholar 

  • Ropolo A, Moron VG, Maletto B, Pistoresi-Palencia MC (2001) Diminished percentage of antigen bearing cells in the lymph nodes of immune aged rats. Exp Gerontol 36:519–535

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102:9194–9199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudensky AY (2011) Regulatory T Cells and Foxp3. Immunol Rev 241:260–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt SV, Nino-Castro AC, Schultze JL (2012) Regulatory dendritic cells: there is more than just immune activation. Front Immunol 3:274

    Google Scholar 

  • Scholz JL, Diaz A, Riley RL, Cancro MP, Frasca D (2013) A comparative review of aging and B cell function in mice and humans. Curr Opin Immunol 25:504–510

    Article  PubMed  CAS  Google Scholar 

  • Serafini P (2013) Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunol Res 57:172–184

    Article  PubMed  Google Scholar 

  • Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13:875–887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirota Y, Shirota H, Klinman DM (2012) Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol 188:1592–1599

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    Article  PubMed  CAS  Google Scholar 

  • Song X, Krelin Y, Dvorkin T, Bjorkdahl O, Segal S, Dinarello CA, Voronov E, Apte RN (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 175:8200–8208

    Article  PubMed  CAS  Google Scholar 

  • Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77

    Article  PubMed  CAS  Google Scholar 

  • Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192:1273–1280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410–4417

    Article  PubMed  Google Scholar 

  • Tsiganov EN, Verbina EM, Radaeva TV, Sosunov VV, Kosmiadi GA, Nikitina IY, Lyadova IV (2014) Gr-1dimCD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immunol 192:4718–4727

    Article  PubMed  CAS  Google Scholar 

  • Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penzoesterreicher M, Bjorkdahl O, Fox JG, Wang TC (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14:408–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V (2009) Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 9:470–481

    Article  PubMed  CAS  Google Scholar 

  • Vaknin I, Blinder L, Wang L, Gazit R, Shapira E, Genina O, Pines M, Pikarsky E, Baniyash M (2008) A common pathway mediated through toll-like receptors leads to T-and natural killer-cell immunosuppression. Blood 111:1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Vasquez-dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D, Kim Y (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123:1580–1589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DM (2013) Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 93:633–637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wingender G, Garbi N, Schumak B, Jungerkes F, Endl E, Von Bubnoff D, Steitz J, Striegler J, Moldenhauer G, Tuting T, Heit A, Huster KM, Takikawa O, Akira S, Busch DH, Wagner H, Hammerling GJ, Knolle PA, LImmer A (2006) Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur J Immunol 36:12–20

    Article  PubMed  CAS  Google Scholar 

  • Yang R, Cai Z, Zhang Y, Yutzy WHT, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res 66:6807–6815

    Article  PubMed  CAS  Google Scholar 

  • Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    Article  PubMed  CAS  Google Scholar 

  • Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, Villagra A, Antonia S, Mccaffrey JC, Fishman M, Sarnaik A, Horna P, Sotomayor E, Gabrilovich DI (2013) Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14:211–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao BG, Vasilakos JP, Tross D, Smirnov D, Klinman DM (2014) Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors. J Immunother Cancer 2:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Rong L, Li X, Liu X, Deng J, Wu H, Xu X, Erben U, Wu P, Syrbe U, Sieper J, Qin Z (2012) TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest 122:4094–4104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Wu T, Shao S, Shi B (2016) Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncoimmunology 5:e1004983

    Article  PubMed  CAS  Google Scholar 

  • Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17:1765–1775

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Cristina Pistoresi-Palencia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pistoresi-Palencia, M.C., Harman, M.F., Castell, S.D. (2018). Myeloid-Derived Suppressor Cells (MDSCs) in Aged Mice: Focus on Inflammation. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_95-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_95-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics