Skip to main content
Log in

Melting of P wave bottomonium states in the quark-gluon plasma from lattice NRQCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the fate of P wave bottomonium states in the quark-gluon plasma, using a spectral function analysis of euclidean lattice correlators. The correlators are obtained from lattice QCD simulations with two light quark flavours on highly anisotropic lattices, treating the bottom quark nonrelativistically. We find clear indications of melting immediately after the deconfinement transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].

    Article  ADS  Google Scholar 

  2. CMS collaboration, Indications of suppression of excited \( \varUpsilon \) states in Pb-Pb collisions at \( \sqrt{{{S_{\mathrm{NN}}}}} \) = 2.76 TeV, Phys. Rev. Lett. 107 (2011) 052302 [arXiv:1105.4894] [INSPIRE].

    Article  ADS  Google Scholar 

  3. CMS collaboration, Observation of sequential \( \varUpsilon \) suppression in Pb-Pb collisions, Phys. Rev. Lett. 109 (2012) 222301 [arXiv:1208.2826] [INSPIRE].

    Article  ADS  Google Scholar 

  4. CMS collaboration, T. Dahms, \( \varUpsilon \) suppression in Pb-Pb collisions at the LHC, PoS(Beauty 2013)021 [arXiv:1307.1795] [INSPIRE].

  5. CMS, ATLAS and ALICE collaborations, A. Rossi, Heavy-flavour and quarkonia in heavy-ion collisions, arXiv:1308.2973 [INSPIRE].

  6. A. Mócsy , P. Petreczky and M. Strickland, Quarkonia in the quark gluon plasma, Int. J. Mod. Phys. A 28 (2013) 1340012 [arXiv:1302.2180] [INSPIRE].

    Article  Google Scholar 

  7. A. Rothkopf, From complex to stochastic potential: heavy quarkonia in the quark-gluon plasma, Mod. Phys. Lett. A 28 (2013) 1330005 [arXiv:1302.6195] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Ghiglieri, Review of the EFT treatment of quarkonium at finite temperature, PoS(Confinement X)004 [arXiv:1303.6438] [INSPIRE].

  9. V. Agotiya, V. Chandra and B. Patra, Dissociation of 1P quarkonium states in a hot QCD medium, arXiv:0910.0586 [INSPIRE].

  10. R. Sharma and I. Vitev, High transverse momentum quarkonium production and dissociation in heavy ion collisions, Phys. Rev. C 87 (2013) 044905 [arXiv:1203.0329] [INSPIRE].

    ADS  Google Scholar 

  11. K. Suzuki, P. Gubler, K. Morita and M. Oka, Thermal modification of bottomonium spectra from QCD sum rules with the maximum entropy method, Nucl. Phys. A 897 (2013) 28 [arXiv:1204.1173] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Dominguez, M. Loewe and Y. Zhang, Bottonium in QCD at finite temperature, Phys. Rev. D 88 (2013) 054015 [arXiv:1307.5766] [INSPIRE].

    ADS  Google Scholar 

  13. G. Aarts et al., Bottomonium above deconfinement in lattice nonrelativistic QCD, Phys. Rev. Lett. 106 (2011) 061602 [arXiv:1010.3725] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Aarts et al., What happens to the \( \varUpsilon \) and η b in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD, JHEP 11 (2011) 103 [arXiv:1109.4496] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. G. Aarts et al., S wave bottomonium states moving in a quark-gluon plasma from lattice NRQCD, JHEP 03 (2013) 084 [arXiv:1210.2903] [INSPIRE].

    Article  ADS  Google Scholar 

  16. W. Caswell and G. Lepage, Effective Lagrangians for bound state problems in QED, QCD and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Davies et al., Precision \( \varUpsilon \) spectroscopy from nonrelativistic lattice QCD, Phys. Rev. D 50 (1994) 6963 [hep-lat/9406017] [INSPIRE].

    ADS  Google Scholar 

  18. M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].

    Article  ADS  Google Scholar 

  20. N. Brambilla, M.A. Escobedo, J. Ghiglieri, J. Soto and A. Vairo, Heavy quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature, JHEP 09 (2010) 038 [arXiv:1007.4156] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. T. Umeda, A constant contribution in meson correlators at finite temperature, Phys. Rev. D 75 (2007) 094502 [hep-lat/0701005] [INSPIRE].

    ADS  Google Scholar 

  23. P. Petreczky, On temperature dependence of quarkonium correlators, Eur. Phys. J. C 62 (2009) 85 [arXiv:0810.0258] [INSPIRE].

    Article  ADS  Google Scholar 

  24. G. Aarts and J.M. Martínez Resco, Transport coefficients, spectral functions and the lattice, JHEP 04 (2002) 053 [hep-ph/0203177] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R.K. Bryan, Maximum entropy analysis of oversampled data problems, Eur. Biophys. J. 18 (1990) 165.

    Article  Google Scholar 

  27. A. Rothkopf, T. Hatsuda and S. Sasaki, Complex heavy-quark potential at finite temperature from lattice QCD, Phys. Rev. Lett. 108 (2012) 162001 [arXiv:1108.1579] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Bazavov and P. Petreczky, Static meson correlators in 2 + 1 flavor QCD at non-zero temperature, Eur. Phys. J. A 49 (2013) 85 [arXiv:1303.5500] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Rothkopf, Improved maximum entropy analysis with an extended search space, J. Comput. Phys. 238 (2013) 106 [arXiv:1110.6285] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. Y. Burnier and A. Rothkopf, A novel Bayesian approach to spectral function reconstruction, Phys. Rev. Lett. 111 (2013) 182003 [arXiv:1307.6106] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Kim, P. Petreczky and A. Rothkopf, Lattice NRQCD study of in-medium bottomonium states using N f = 2 + 1, 48 × 12 HotQCD configurations, PoS(LATTICE 2013) 169 [arXiv:1310.6461] [INSPIRE].

  32. A. Amato et al., Electrical conductivity of the quark-gluon plasma across the deconfinement transition, Phys. Rev. Lett. 111 (2013) 172001 [arXiv:1307.6763] [INSPIRE].

    Article  ADS  Google Scholar 

  33. P. Giudice et al., Electric charge susceptibility in 2 + 1 flavour QCD on an anisotropic lattice, PoS(LATTICE 2013)492 [arXiv:1309.6253] [INSPIRE].

  34. T. Harris et al., Bottomonium spectrum at finite temperature, PoS(LATTICE 2013) 171 [arXiv:1311.3208] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Aarts.

Additional information

ArXiv ePrint: 1310.5467

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarts, G., Allton, C., Kim, S. et al. Melting of P wave bottomonium states in the quark-gluon plasma from lattice NRQCD. J. High Energ. Phys. 2013, 64 (2013). https://doi.org/10.1007/JHEP12(2013)064

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)064

Keywords

Navigation