Skip to main content
Log in

What happens to the \( \Upsilon \) and η b in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study bottomonium spectral functions in the quark-gluon plasma in the \(\Upsilon \) and η b channels, using lattice QCD simulations with two flavours of light quark on highly anisotropic lattices. The bottom quark is treated with nonrelativistic QCD (NRQCD). In the temperature range we consider, \(0.{42} \leqslant T/{T_c} \leqslant {2}.0{9} \), we find that the ground states survive, whereas the excited states are suppressed as the temperature is increased. The position and width of the ground states are compared to analytical effective field theory (EFT) predictions. Systematic uncertainties of the maximum entropy method (MEM), used to construct the spectral functions, are discussed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, Phys. Lett. B 178 (1986) 416 [INSPIRE]

    ADS  Google Scholar 

  2. NA60 collaboration, R. Arnaldi, J/ ψ production in p-A and A-A collisions at fixed target experiments, Nucl. Phys. A 830 (2009) 345C [arXiv:0907.5004] [INSPIRE]

    ADS  Google Scholar 

  3. PHENIX collaboration, A. Adare et al., J/ ψ production in \( \sqrt {{^sNN}} = 200\,GeV\,Cu + Cu \) collisions, Phys. Rev. Lett. 101 (2008) 122301 [arXiv:0801.0220] [INSPIRE]

    Article  ADS  Google Scholar 

  4. H. Satz, Quarkonium binding and dissociation: the spectral analysis of the QGP, Nucl. Phys. A 783 (2007) 249 [hep-ph/0609197] [INSPIRE]

    ADS  Google Scholar 

  5. R. Rapp, D. Blaschke and P. Crochet, Charmonium and bottomonium production in heavy-ion collisions, Prog. Part. Nucl. Phys. 65 (2010) 209 [arXiv:0807.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  6. CMS collaboration, S. Chatrchyan et al., Indications of suppression of excited \( \Upsilon \) states in PbPb collisions at \( \sqrt {{^SNN}} = 2.76\,\,TeV \), Phys. Rev. Lett. 107 (2011) 052302 [arXiv:1105.4894] [INSPIRE]

    Article  ADS  Google Scholar 

  7. STAR collaboration, R. Reed, Measuring the \( \Upsilon \) nuclear modification factor at STAR, arXiv:1109.3891 [INSPIRE].

  8. M. Strickland, Thermal \( \Upsilon \) (1s) and χ b1 suppression in \( \sqrt {{^sNN}} = 2.76\,TeV \) Pb-Pb collisions at the LHC, Phys. Rev. Lett. 107 (2011) 132301 [arXiv:1106.2571] [INSPIRE]

    Article  ADS  Google Scholar 

  9. F. Brezinski and G. Wolschin, Gluodissociation and screening of \( \Upsilon \) states in PbPb collisions at \( \sqrt {{^sNN}} = 2.76\,TeV \) arXiv:1109.0211 [INSPIRE].

  10. A. Mócsy and P. Petreczky, Can quarkonia survive deconfinement?, Phys. Rev. D 77 (2008) 014501 [arXiv:0705.2559] [INSPIRE].

    ADS  Google Scholar 

  11. A. Mócsy and P. Petreczky, Color screening melts quarkonium, Phys. Rev. Lett. 99 (2007) 211602 [arXiv:0706.2183] [INSPIRE].

    Article  ADS  Google Scholar 

  12. T. Umeda, K. Nomura and H. Matsufuru, Charmonium at finite temperature in quenched lattice QCD, Eur. Phys. J. C 39S1 (2005) 9 [hep-lat/0211003] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Asakawa and T. Hatsuda, J/ ψ and η c in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92 (2004) 012001 [hep-lat/0308034] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Behavior of charmonium systems after deconfinement, Phys. Rev. D 69 (2004) 094507 [hep-lat/0312037] [INSPIRE].

    ADS  Google Scholar 

  15. A. Jakovác, P. Petreczky, K. Petrov and A. Velytsky, Quarkonium correlators and spectral functions at zero and finite temperature, Phys. Rev. D 75 (2007) 014506 [hep-lat/0611017] [INSPIRE].

    ADS  Google Scholar 

  16. G. Aarts, C. Allton, M.B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76 (2007) 094513 [arXiv:0705.2198] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M.B. Oktay and J.-I. Skullerud, Momentum-dependence of charmonium spectral functions from lattice QCD, arXiv:1005.1209 [INSPIRE].

  18. H.-T. Ding et al., Charmonium correlation and spectral functions at finite temperature, PoS(Lattice 2010)180 [arXiv:1011.0695] [INSPIRE].

  19. WHOT-QCD collaboration, H. Ohno et al., Charmonium spectral functions with the variational method in zero and finite temperature lattice QCD, Phys. Rev. D 84 (2011) 094504 [arXiv:1104.3384] [INSPIRE]

    Google Scholar 

  20. J. Noronha and A. Dumitru, Thermal width of the \( \Upsilon \) at large t’ Hooft coupling, Phys. Rev. Lett. 103 (2009) 152304 [arXiv:0907.3062] [INSPIRE].

    Article  ADS  Google Scholar 

  21. H.R. Grigoryan, P.M. Hohler and M.A. Stephanov, Towards the gravity dual of quarkonium in the strongly coupled QCD plasma, Phys. Rev. D 82 (2010) 026005 [arXiv:1003.1138] [INSPIRE].

    ADS  Google Scholar 

  22. H.R. Grigoryan and Y.V. Kovchegov, Gravity dual corrections to the heavy quark potential at finite-temperature, Nucl. Phys. B 852 (2011) 1 [arXiv:1105.2300] [INSPIRE].

    Article  ADS  Google Scholar 

  23. I.M. Narodetskiy, Y.A. Simonov and A.I. Veselov, Heavy quark bound states above deconfinement, arXiv:1102.5453 [INSPIRE].

  24. K. Marasinghe and K. Tuchin, Quarkonium dissociation in quark-gluon plasma via ionization in magnetic field, Phys. Rev. C 84 (2011) 044908 [arXiv:1103.1329] [INSPIRE].

    ADS  Google Scholar 

  25. M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Laine, A resummed perturbative estimate for the quarkonium spectral function in hot QCD, JHEP 05 (2007) 028 [arXiv:0704.1720] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Laine, How to compute the thermal quarkonium spectral function from first principles?, Nucl. Phys. A 820 (2009) 25C [arXiv:0810.1112] [INSPIRE].

    ADS  Google Scholar 

  29. M. Laine, News on hadrons in a hot medium, arXiv:1108.5965 [INSPIRE].

  30. N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].

    ADS  Google Scholar 

  31. N. Brambilla, M.A. Escobedo, J. Ghiglieri, J. Soto and A. Vairo, Heavy quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature, JHEP 09 (2010) 038 [arXiv:1007.4156] [INSPIRE].

    Article  ADS  Google Scholar 

  32. N. Brambilla, J. Ghiglieri, P. Petreczky and A. Vairo, The Polyakov loop and correlator of Polyakov loops at next-to-next-to-leading order, Phys. Rev. D 82 (2010) 074019 [arXiv:1007.5172] [INSPIRE].

    ADS  Google Scholar 

  33. N. Brambilla, M.A. Escobedo, J. Ghiglieri and A. Vairo, The spin-orbit potential and Poincaré invariance in finite temperature pNRQCD, JHEP 07 (2011) 096 [arXiv:1105.4807] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Beraudo, J.-P. Blaizot and C. Ratti, Real and imaginary-time Q Q correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [INSPIRE].

    ADS  Google Scholar 

  35. A. Beraudo, J.-P. Blaizot, P. Faccioli and G. Garberoglio, A path integral for heavy-quarks in a hot plasma, Nucl. Phys. A 846 (2010) 104 [arXiv:1005.1245] [INSPIRE].

    ADS  Google Scholar 

  36. P. Petreczky, C. Miao and A. Mócsy, Quarkonium spectral functions with complex potential, Nucl. Phys. A 855 (2011) 125 [arXiv:1012.4433] [INSPIRE].

    ADS  Google Scholar 

  37. M. Margotta, K. McCarty, C. McGahan, M. Strickland and D. Yager-Elorriaga, Quarkonium states in a complex-valued potential, Phys. Rev. D 83 (2011) 105019 [arXiv:1101.4651] [INSPIRE].

    ADS  Google Scholar 

  38. A. Rothkopf, T. Hatsuda and S. Sasaki, Proper heavy-quark potential from a spectral decomposition of the thermal Wilson loop, PoS(LAT2009)162 [arXiv:0910.2321] [INSPIRE].

  39. A. Rothkopf, T. Hatsuda and S. Sasaki, Complex heavy-quark potential at finite temperature from lattice QCD, arXiv:1108.1579 [INSPIRE].

  40. J. Fingberg, Heavy quarkonia at high temperature, Phys. Lett. B 424 (1998) 343 [hep-lat/9707012] [INSPIRE]

    ADS  Google Scholar 

  41. G. Aarts et al., Bottomonium above deconfinement in lattice nonrelativistic QCD, Phys. Rev. Lett. 106 (2011) 061602 [arXiv:1010.3725] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE]

    Article  ADS  Google Scholar 

  43. G. Aarts et al., Bottomonium at non-zero temperature from lattice non-relativistic QCD, arXiv:1109.1475 [INSPIRE].

  44. W.E. Caswell and G.P. Lepage, Effective Lagrangians for bound state problems in QED, QCD and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE]

    ADS  Google Scholar 

  45. G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea and K. Hornbostel, Improved nonrelativistic QCD for heavy quark physics, Phys. Rev. D 46 (1992) 4052 [hep-lat/9205007] [INSPIRE]

    ADS  Google Scholar 

  46. G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum-ibid. D 55 (1997)5853] [hep-ph/9407339] [INSPIRE]

    ADS  Google Scholar 

  47. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE]

    Article  ADS  Google Scholar 

  48. T. Umeda, A constant contribution in meson correlators at finite temperature, Phys. Rev. D 75 (2007) 094502 [hep-lat/0701005] [INSPIRE]

    ADS  Google Scholar 

  49. G. Aarts and J.M. Martínez Resco, Transport coefficients, spectral functions and the lattice, JHEP 04 (2002) 053 [hep-ph/0203177] [INSPIRE]

    Article  ADS  Google Scholar 

  50. P. Petreczky, On temperature dependence of quarkonium correlators, Eur. Phys. J. C 62 (2009) 85 [arXiv:0810.0258] [INSPIRE].

    Article  ADS  Google Scholar 

  51. G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99 (2007) 022002 [hep-lat/0703008] [INSPIRE]

    Article  ADS  Google Scholar 

  52. R.K. Bryan, Maximum entropy analysis of oversampled data problems,Eur. Biophys. J. 18 (1990) 165.

    Article  MathSciNet  Google Scholar 

  53. S. Caron-Huot, M. Laine and G.D. Moore, A way to estimate the heavy quark thermalization rate from the lattice, JHEP 04 (2009) 053 [arXiv:0901.1195] [INSPIRE].

    Article  ADS  Google Scholar 

  54. H.B. Meyer, The errant life of a heavy quark in the quark-gluon plasma, New J. Phys. 13 (2011) 035008 [arXiv:1012.0234] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Morrin, A. Ó Cais, M. Peardon, S.M. Ryan and J.-I. Skullerud, Dynamical QCD simulations on anisotropic lattices, Phys. Rev. D 74 (2006) 014505 [hep-lat/0604021] [INSPIRE]

    ADS  Google Scholar 

  56. C.T.H. Davies et al., Precision \( \Upsilon \) spectroscopy from nonrelativistic lattice QCD, Phys. Rev. D 50 (1994) 6963 [hep-lat/9406017] [INSPIRE]

    ADS  Google Scholar 

  57. C.T.H. Davies et al., Precision charmonium spectroscopy from lattice QCD,Phys. Rev. D 52 (1995) 6519 [hep-lat/9506026] [INSPIRE]

    ADS  Google Scholar 

  58. UKQCD collaboration, C.T.H. Davies et al., Scaling of the \( \Upsilon \) spectrum in lattice NRQCD, Phys. Rev. D 58 (1998) 054505 [hep-lat/9802024] [INSPIRE]

    ADS  Google Scholar 

  59. G.P. Lepage and P.B. Mackenzie, On the viability of lattice perturbation theory, Phys. Rev. D 48 (1993) 2250 [hep-lat/9209022] [INSPIRE]

    ADS  Google Scholar 

  60. P. Petreczky, S. Datta, F. Karsch and I. Wetzorke, Charmonium at finite temperature, Nucl. Phys. Proc. Suppl. 129 (2004) 596 [hep-lat/0309012] [INSPIRE]

    Article  ADS  Google Scholar 

  61. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE]

    ADS  Google Scholar 

  62. Belle collaboration, I. Adachi et al., First observation of the P-wave spin-singlet bottomonium states h b (1P ) and h b (2P ), arXiv:1103.3419 [INSPIRE].

  63. F. Karsch, E. Laermann, P. Petreczky and S. Stickan, Infinite temperature limit of meson spectral functions calculated on the lattice, Phys. Rev. D 68 (2003) 014504 [hep-lat/0303017] [INSPIRE]

    ADS  Google Scholar 

  64. G. Aarts and J.M. Martínez Resco, Continuum and lattice meson spectral functions at nonzero momentum and high temperature, Nucl. Phys. B 726 (2005) 93 [hep-lat/0507004] [INSPIRE]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Aarts.

Additional information

ArXiv ePrint: 1109.4496

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarts, G., Allton, C., Kim, S. et al. What happens to the \( \Upsilon \) and η b in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD. J. High Energ. Phys. 2011, 103 (2011). https://doi.org/10.1007/JHEP11(2011)103

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)103

Keywords

Navigation