Skip to main content
Log in

Thermal width and gluo-dissociation of quarkonium in pNRQCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The thermal width of heavy-quarkonium bound states in a quark-gluon plasma has been recently derived in an effective field theory approach. Two phenomena contribute to the width: the Landau damping phenomenon and the break-up of a colour-singlet bound state into a colour-octet heavy quark-antiquark pair by absorption of a thermal gluon. In the paper, we investigate the relation between the singlet-to-octet thermal break-up and the so-called gluo-dissociation, a mechanism for quarkonium dissociation widely used in phenomenological approaches. The gluo-dissociation thermal width is obtained by convo-luting the gluon thermal distribution with the cross section of a gluon and a 1S quarkonium state to a colour octet quark-antiquark state in vacuum, a cross section that at leading order, but neglecting colour-octet effects, was computed long ago by Bhanot and Peskin. We will, first, show that the effective field theory framework provides a natural deriva-tion of the gluo-dissociation factorization formula at leading order, which is, indeed, the singlet-to-octet thermal break-up expression. Second, the singlet-to-octet thermal break-up expression will allow us to improve the Bhanot-Peskin cross section by including the contribution of the octet potential, which amounts to include final-state interactions between the heavy quark and antiquark. Finally, we will quantify the effects due to final-state interactions on the gluo-dissociation cross section and on the quarkonium thermal width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, Phys. Lett. B 178 (1986)416 [INSPIRE].

    ADS  Google Scholar 

  2. Quarkonium Working Group collaboration, N. Brambilla et al., Heavy quarkonium physics, CERN-2005-005, CERN, Geneva Switzerland (2005) [hep-ph/0412158] [INSPIRE].

    Google Scholar 

  3. N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011)1534 [arXiv:1010.5827] [INSPIRE].

    ADS  Google Scholar 

  4. M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Laine, A resummed perturbative estimate for the quarkonium spectral function in hot QCD, JHEP 05 (2007) 028 [arXiv:0704.1720] [INSPIRE].

    Article  ADS  Google Scholar 

  6. Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Beraudo, J.-P. Blaizot and C. Ratti, Real and imaginary-time \(Q\overline Q\) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [INSPIRE].

    ADS  Google Scholar 

  8. M. Á. Escobedo and J. Soto, Non-relativistic bound states at finite temperature (I): the hydrogen atom, Phys. Rev. A 78 (2008) 032520 [arXiv:0804.0691] [INSPIRE].

    ADS  Google Scholar 

  9. M. Á. Escobedo and J. Soto, Non-relativistic bound states at finite temperature (II): the muonic hydrogen, Phys. Rev. A 82 (2010) 042506 [arXiv:1008.0254] [INSPIRE].

    ADS  Google Scholar 

  10. M. Á. Escobedo, J. Soto and M. Mannarelli, Non-relativistic bound states in a moving thermal bath, Phys. Rev. D 84 (2011) 016008 [arXiv:1105.1249] [INSPIRE].

    ADS  Google Scholar 

  11. N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].

    ADS  Google Scholar 

  12. N. Brambilla, M. Á. Escobedo, J. Ghiglieri, J. Soto and A. Vairo, Heavy quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature, JHEP 09 (2010) 038 [arXiv:1007.4156] [INSPIRE].

    Article  ADS  Google Scholar 

  13. N. Brambilla, M. Á. Escobedo, J. Ghiglieri and A. Vairo, The spin-orbit potential and Poincaré invariance in finite temperature pNRQCD, JHEP 07 (2011) 096 [arXiv:1105.4807] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Mócsy and P. Petreczky, Color screening melts quarkonium, Phys. Rev. Lett. 99 (2007) 211602 [arXiv:0706.2183] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Rapp, D. Blaschke and P. Crochet, Charmonium and bottomonium production in heavy-ion collisions, Prog. Part. Nucl. Phys. 65 (2010) 209 [arXiv:0807.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  16. L. Kluberg and H. Satz, Color deconfinement and charmonium production in nuclear collisions, arXiv:0901.3831 [INSPIRE].

  17. D. Kharzeev and H. Satz, Quarkonium interactions in hadronic matter, Phys. Lett. B 334 (1994)155 [hep-ph/9405414] [INSPIRE].

    ADS  Google Scholar 

  18. X.-M. Xu, D. Kharzeev, H. Satz and X.-N. Wang, J/ψ suppression in an equilibrating parton plasma, Phys. Rev. C 53 (1996) 3051 [hep-ph/9511331] [INSPIRE].

    ADS  Google Scholar 

  19. X.-M. Xu, J/ψ production in an equilibrating partonic system, Nucl. Phys. A 658 (1999) 165 [arXiv:0704.0668] [INSPIRE].

    ADS  Google Scholar 

  20. A. Polleri, T. Renk, R. Schneider and W. Weise, Kinetic description of charmonium production in high-energy nuclear collisions, Phys. Rev. C 70 (2004) 044906 [nucl-th/0306025] [INSPIRE].

    ADS  Google Scholar 

  21. B. Patra and V. Menon, J/ψ gluonic dissociation revisited: I. fugacity, flux and formation time effects, Eur. Phys. J. C 37 (2004) 115 [nucl-th/0401025] [INSPIRE].

    Article  ADS  Google Scholar 

  22. B. Patra and V. Menon, J/ψ gluonic dissociation revisited. II. Hydrodynamic expansion effects, Eur. Phys. J. C 44 (2005) 567 [nucl-th/0503034] [INSPIRE].

    Article  ADS  Google Scholar 

  23. B. Patra and V. Menon, J/ψ gluonic dissociation revisited: III. Effects of transverse hydrodynamic flow, Eur. Phys. J. C 48 (2006) 207 [nucl-th/0512103] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C.-Y. Wong, Heavy quarkonia in quark-gluon plasma, Phys. Rev. C 72 (2005) 034906 [hep-ph/0408020] [INSPIRE].

    ADS  Google Scholar 

  25. F. Arleo, J. Cugnon and Y. Kalinovsky, Heavy-quarkonium interaction in QCD at finite temperature, Phys. Lett. B 614 (2005) 44 [hep-ph/0410295] [INSPIRE].

    ADS  Google Scholar 

  26. R. Thews and M. Mangano, Momentum spectra of charmonium produced in a quark-gluon plasma, Phys. Rev. C 73 (2006) 014904 [nucl-th/0505055] [INSPIRE].

    ADS  Google Scholar 

  27. L. Grandchamp, S. Lumpkins, D. Sun, H. van Hees and R. Rapp, Bottomonium production at RHIC and CERN LHC, Phys. Rev. C 73 (2006) 064906 [hep-ph/0507314] [INSPIRE].

    ADS  Google Scholar 

  28. Y. Park, K.-I. Kim, T. Song, S.H. Lee and C.-Y. Wong, Widths of quarkonia in quark gluon plasma, Phys. Rev. C 76 (2007) 044907 [arXiv:0704.3770] [INSPIRE].

    ADS  Google Scholar 

  29. Y. Liu, Z. Qu, N. Xu and P. Zhuang, Rapidity dependence of J/ψ production at RHIC and LHC, J. Phys. G 37 (2010) 075110 [arXiv:0907.2723] [INSPIRE].

    ADS  Google Scholar 

  30. Z. Qu, Y. Liu, N. Xu and P. Zhuang, J/ψ production at mid and forward rapidity at RHIC, Nucl. Phys. A 830 (2009) 335 C [arXiv:0907.3626] [INSPIRE].

    ADS  Google Scholar 

  31. K. Zhou, N. Xu and P. Zhuang, Transverse momentum distribution as a probe of J/ψ production mechanism in heavy ion collisions, Nucl. Phys. A 834 (2010) 249 C [arXiv:0911.5008] [INSPIRE].

    ADS  Google Scholar 

  32. T. Song, W. Park and S.H. Lee, R AA of J/ψ near mid-rapidity in heavy ion collisions at \(\sqrt {{{s_{{N{ }N}}}}} = {2}00\,GeV\), Phys. Rev. C 81 (2010) 034914 [arXiv:1002.1884] [INSPIRE].

    ADS  Google Scholar 

  33. X. Zhao and R. Rapp, Charmonium in medium: from correlators to experiment, Phys. Rev. C 82 (2010) 064905 [arXiv:1008.5328] [INSPIRE].

    ADS  Google Scholar 

  34. Y. Liu, B. Chen, N. Xu and P. Zhuang, \(\Upsilon\) production as a probe for early state dynamics in high energy nuclear collisions at RHIC, Phys. Lett. B 697 (2011) 32 [arXiv:1009.2585] [INSPIRE].

    ADS  Google Scholar 

  35. J. Uphoff, K. Zhou, O. Fochler, Z. Xu and C. Greiner, Heavy quarks and charmonium at RHIC and LHC within a partonic transport model, PoS(BORMIO 2011)032 [arXiv:1104.2437] [INSPIRE].

  36. M. Mandal and P. Roy, Gluon dissociation of J/ψ in anisotropic quark-gluon plasma, arXiv:1105.5528 [INSPIRE].

  37. R. Rapp and H. van Hees, Heavy quarks in the quark-gluon plasma, arXiv:0903.1096 [INSPIRE].

  38. L. Grandchamp and R. Rapp, Thermal versus direct J/ψ production in ultrarelativistic heavy ion collisions, Phys. Lett. B 523 (2001) 60 [hep-ph/0103124] [INSPIRE].

    ADS  Google Scholar 

  39. N. Brambilla, M. Á. Escobedo, J. Ghiglieri and A. Vairo, Quasi-free dissociation of heavy quarkonium in the quark-gluon plasma with effective field theories, TUM-EFT 27/11, in preparation.

  40. M.E. Peskin, Short distance analysis for heavy quark systems. 1. Diagrammatics, Nucl. Phys. B 156 (1979) 365 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. G. Bhanot and M.E. Peskin, Short distance analysis for heavy quark systems. 2. Applications, Nucl. Phys. B 156 (1979) 391 [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Ghiglieri, Effective field theories of QCD for heavy quarkonia at finite temperature, Ph.D. thesis, TU Munich, Munich Germany July 2011.

  43. A. Vairo, Quarkonium in a weakly-coupled quark-gluon plasma, AIP Conf. Proc. 1317 (2011) 241 [arXiv:1009.6137] [INSPIRE].

    ADS  Google Scholar 

  44. CMS collaboration, S. Chatrchyan et al., Indications of suppression of excited \(\Upsilon\) states in Pb-Pb collisions at \(\sqrt {{{S_{{N{ }N}}}}} = {2}.{76 }TeV\), Phys. Rev. Lett. 107 (2011) 052302 [arXiv:1105.4894] [INSPIRE].

    Article  ADS  Google Scholar 

  45. CMS collaboration, Quarkonium production in Pb-Pb collisions, PAS-HIN-10-006, CERN, Geneva Switzerland (2011).

    Google Scholar 

  46. M. Strickland, Thermal \(\Upsilon\) (1s) and χb1 suppression in \(\sqrt {{{s_{{N{ }N}}}}} = {2}.{76 }TeV\) Pb-Pb collisions at the LHC, Phys. Rev. Lett. 107 (2011) 132301 [arXiv:1106.2571] [INSPIRE].

    Article  ADS  Google Scholar 

  47. W. Caswell and G. Lepage, Effective Lagrangians for bound state problems in QED, QCD and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

    ADS  Google Scholar 

  48. G.T. Bodwin, E. Braaten and G. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997)5853] [hep-ph/9407339] [INSPIRE].

    ADS  Google Scholar 

  49. A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].

    Article  ADS  Google Scholar 

  50. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].

    Article  Google Scholar 

  51. A. Vairo, Effective field theories for heavy quarkonium at finite temperature, PoS(CONFINEMENT8)002 [arXiv:0901.3495] [INSPIRE].

  52. G. Aarts et al., What happens to the \(\Upsilon\) and η b in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD, JHEP 11 (2011) 103 [arXiv:1109.4496] [INSPIRE].

    Article  ADS  Google Scholar 

  53. B.A. Kniehl and A.A. Penin, Ultrasoft effects in heavy quarkonium physics, Nucl. Phys. B 563 (1999)200 [hep-ph/9907489] [INSPIRE].

    Article  ADS  Google Scholar 

  54. B.A. Kniehl, A.A. Penin, V.A. Smirnov and M. Steinhauser, Potential NRQCD and heavy quarkonium spectrum at next-to-next-to-next-to-leading order, Nucl. Phys. B 635 (2002) 357 [hep-ph/0203166] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Kobes and G. Semenoff, Discontinuities of Green functions in field theory at finite temperature and density. 2, Nucl. Phys. B 272 (1986) 329 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. M. Abramovitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York U.S.A. (1964).

  57. F. Brezinski and G. Wolschin, Gluodissociation and screening of \(\Upsilon\) states in Pb-Pb collisions at \(\sqrt {{{s_{{N{ }N}}}}} = {2}.{76 }TeV\), arXiv:1109.0211 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Ghiglieri.

Additional information

Arxiv Eprint: 1109.5826

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brambilla, N., Escobedo, M.Á., Ghiglieri, J. et al. Thermal width and gluo-dissociation of quarkonium in pNRQCD. J. High Energ. Phys. 2011, 116 (2011). https://doi.org/10.1007/JHEP12(2011)116

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)116

Keywords

Navigation