Skip to main content
Log in

An effective field theory for non-relativistic Majorana neutrinos

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Heavy Majorana neutrinos enter in many scenarios of physics beyond the Standard Model: in the original seesaw mechanism they provide a natural explanation for the small masses of the Standard Model neutrinos and in the simplest leptogenesis framework they are at the origin of the baryonic matter of the universe. In this paper, we develop an effective field theory for non-relativistic Majorana particles, which is analogous to the heavy-quark effective theory. Then, we apply it to the case of a heavy Majorana neutrino decaying in a hot and dense plasma of Standard Model particles, whose temperature is much smaller than the mass of the Majorana neutrino but still much larger than the electroweak scale. The neutrino width gets zero-temperature contributions that can be computed from in-vacuum matrix elements, and thermal corrections. Only the latter will be addressed. Symmetry and power counting arguments made manifest by the effective field theory restrict the form of the thermal corrections and simplify their calculation. The final result agrees with recent determinations obtained with different methods. The effective field theory presented here is suitable to be used for a variety of different models involving non-relativistic Majorana fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Drewes, The phenomenology of right handed neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].

    Article  ADS  Google Scholar 

  2. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    Article  Google Scholar 

  3. SNO collaboration, S. Ahmed et al., Measurement of the total active 8 B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity, Phys. Rev. Lett. 92 (2004) 181301 [nucl-ex/0309004] [INSPIRE].

    Article  Google Scholar 

  4. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  6. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Dolgov, Non-GUT baryogenesis, Phys. Rept. 222 (1992) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  8. WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [INSPIRE].

    Article  Google Scholar 

  9. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0901.0011] [INSPIRE].

    Article  ADS  Google Scholar 

  12. N. Isgur and M.B. Wise, Weak decays of heavy mesons in the static quark approximation, Phys. Lett. B 232 (1989) 113 [INSPIRE].

    Article  ADS  Google Scholar 

  13. E. Eichten and B.R. Hill, An effective field theory for the calculation of matrix elements involving heavy quarks, Phys. Lett. B 234 (1990) 511 [INSPIRE].

    Article  ADS  Google Scholar 

  14. K. Kopp and T. Okui, Effective field theory for a heavy Majorana fermion, Phys. Rev. D 84 (2011) 093007 [arXiv:1108.2702] [INSPIRE].

    ADS  Google Scholar 

  15. A. Salvio, P. Lodone and A. Strumia, Towards leptogenesis at NLO: the right-handed neutrino interaction rate, JHEP 08 (2011) 116 [arXiv:1106.2814] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. M. Laine and Y. Schröder, Thermal right-handed neutrino production rate in the non-relativistic regime, JHEP 02 (2012) 068 [arXiv:1112.1205] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M.J. Dugan, M. Golden and B. Grinstein, On the Hilbert space of the heavy quark effective theory, Phys. Lett. B 282 (1992) 142 [INSPIRE].

    Article  ADS  Google Scholar 

  19. P.D. Mannheim, Theory of Majorana masses, Int. J. Theor. Phys. 23 (1984) 643 [INSPIRE].

    Article  Google Scholar 

  20. R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [INSPIRE].

    ADS  Google Scholar 

  22. W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Asaka, M. Laine and M. Shaposhnikov, On the hadronic contribution to sterile neutrino production, JHEP 06 (2006) 053 [hep-ph/0605209] [INSPIRE].

    Article  ADS  Google Scholar 

  27. N. Brambilla, D. Gromes and A. Vairo, Poincaré invariance constraints on NRQCD and potential NRQCD, Phys. Lett. B 576 (2003) 314 [hep-ph/0306107] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Le Bellac, Thermal field theory, Cambridge University Press, Cambridge U.K. (1996).

    Book  Google Scholar 

  29. N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Escobedo.

Additional information

ArXiv ePrint: 1307.7680

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biondini, S., Brambilla, N., Escobedo, M.A. et al. An effective field theory for non-relativistic Majorana neutrinos. J. High Energ. Phys. 2013, 28 (2013). https://doi.org/10.1007/JHEP12(2013)028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)028

Keywords

Navigation