Skip to main content
Log in

Selected topics in Majorana neutrino physics

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Starting from the original Majorana’s article of 1937, the see-saw mechanism is illustrated, first for one and later for three neutrino generations, and neutrinoless double beta decay is considered. Neutrino mixing and oscillations in three flavors are described. The Yukawa couplings to the Higgs field of quarks and leptons are considered, their transformation properties under the corresponding flavor groups are spelled out and the principle of Minimal Flavor Violation is illustrated, in connection with possible new physics beyond the Standard Theory. The idea that the Yukawa couplings may be the vacuum expectation value of some new fields is introduced and natural extrema of potentials which are invariant under quark and lepton flavor groups are characterized. A recent result indicating large mixing of almost degenerate neutrinos is derived from the heavy lepton invariance under flavor O(3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majorana E., Nuovo Cimento, 14 (1937) 171.

    Article  Google Scholar 

  2. Majorana E., Soryushiron Kenkyu’, 63 (1981) 149 (translated by L. Maiani).

    Google Scholar 

  3. Gell-Mann M., Ramond P. and Slansky R., Conf. Proc. C, 790927 (1979) 315 [arXiv:1306.4669 [hep-th]].

    Google Scholar 

  4. Yanagida T., Proceedings of the Workshop on Unified Theory and Baryon Number in the Universe (KEK, Tsukuba, Japan) 1979.

    Google Scholar 

  5. Glashow S. L., Nato Adv. Study Inst. B, 59 (1979) 687.

    Google Scholar 

  6. Mohapatra R. N. and Senjanovic G., Phys. Rev. Lett., 44 (1980) 912.

    Article  ADS  Google Scholar 

  7. D’ambrosio G., Giudice G., Isidori G. and Strumia R., Nucl. Phys. B, 645 (2002) 155 [hep-ph/0207036].

    Article  ADS  Google Scholar 

  8. An F. P. et al. (Daya Bay Collaboration), Chin. Phys. C, 37 (2013) 011001.

    Article  ADS  Google Scholar 

  9. Four ντ events have been reported, until present, in Agafonova N. et al. (OPERA Collaboration), Phys. Lett. B, 691 (2010) 138 [arXiv:1006.1623 [hep-ex]]; JHEP, 1311 (2013) 036 (1404 (2014) 014(E)) [arXiv:1308.2553 [hep-ex]]; arXiv:1401.2079 [hep-ex]; De Lellis L., Seminar at LNGS, March 25, 2014.

  10. Alonso R., Gavela M. B., Isidori G. and Maiani L., JHEP, 1311 (2013) 187 [arXiv:1306.5927 [hep-ph]].

    Article  ADS  Google Scholar 

  11. Wick G. C., Rend. Accad. Lincei, 21 (1935) 170.

    Google Scholar 

  12. Bethe H. and Peierls R., Nature, 133 (1934) 532.

    Article  ADS  Google Scholar 

  13. Fidecaro G., Proceedings of the Conference: The legacy of Bruno Pontecorvo: The scientist and the man, September 11, 2014, Roma, Italy.

  14. Cowan C. L. Jr., Reines F., Harrison F. B., Kruse H. W. and Mcguire A. D., Science, 124 (1956) 103; Reines F. and Cowan C. L. Jr., Nature, 178 (1956) 446.

    Article  ADS  Google Scholar 

  15. Los Alamos Science, 25 (1997).

  16. Maiani L. and Benhar O., Relativistic Quantum Mechanics (Editori Riuniti University Press) 2012.

  17. Minkowski P., Phys. Lett. B, 67 (1977) 421.

    Article  ADS  Google Scholar 

  18. Weinberg S., Phys. Rev. Lett., 43 (1979) 1566.

    Article  ADS  Google Scholar 

  19. Peccei R. D. and Quinn H. R., Phys. Rev. Lett., 38 (1977) 1440; Phys. Rev. D, 16 (1977) 1791.

    Article  ADS  Google Scholar 

  20. Fong C. S. and Nardi E., Phys. Rev. Lett., 111 (2013) 6, 061601 [arXiv:1305.1627 [hep-ph]].

    Article  Google Scholar 

  21. Cabibbo N., Phys. Rev. Lett., 10 (1963) 531.

    Article  ADS  Google Scholar 

  22. Kobayashi M. and Maskawa T., Progr. Theor. Phys., 49 (1973) 652.

    Article  ADS  Google Scholar 

  23. Glashow S. L., Iliopoulos J. and Maiani L., Phys. Rev. D, 2 (1970) 1285.

    Article  ADS  Google Scholar 

  24. Wolfenstein L., Phys. Rev. Lett., 51 (1983) 1945.

    Article  ADS  Google Scholar 

  25. Ceccucci A., Ligeti Z. and Sakai Y., The CKM quark-mixing matrix, in Amsler C. et al. (Particle Data Group Collaboration), Phys. Lett. B, 667 (2008) 1.

    Article  ADS  Google Scholar 

  26. Buras A. J., Jasmin M. and Weisz P. H., Nucl. Phys. B, 347 (1990) 491.

    Article  ADS  Google Scholar 

  27. Inami T. and Lim C. S., Prog. Theor. Phys., 65 (1981) 297 (65 (1981) 1772(E)).

    Article  ADS  Google Scholar 

  28. A detailed analysis is found in: M. Ciuchini et al., JHEP, 0107 (2001) 013, arXiv:hep-ph/0012308v3.

  29. Aaij R. et al. (LHCb Collaboration), Phys. Rev. Lett., 110 (2013) 02180.

    Google Scholar 

  30. Maiani L., Interazioni Elettrodeboli (Editori Riuniti University Press) 2013.

  31. Isidori G., CERN HEP Summer School, arXiv:1302.0661v1 [hep-ph].

  32. Chivukula R. S. and Georgi H., Phys. Lett. B, 188 (1987) 99.

    Article  ADS  Google Scholar 

  33. Mahmoudi F., Neshatpour S. and Orloff J., JHEP, 1208 (2012) 092.

    Article  ADS  Google Scholar 

  34. Pontecorvo B., Sov. Phys. JETP, 6 (1958) 429; Sov. Phys. JETP, 26 (1968) 984.

    ADS  Google Scholar 

  35. For a historical perspective on B. Pontecorvo’s contribution, see Bilenky S. M., Adv. High Energy Phys., 2013 (2013) 873236.

  36. Maki Z., Nakagawa M. and Sakata S., Prog. Theor. Phys., 28 (1962) 870.

    Article  ADS  Google Scholar 

  37. Cabibbo N., Phys. Lett. B, 72 (1978) 333.

    Article  ADS  Google Scholar 

  38. Bilenky S. M. and Pontecorvo B., Phys. Rept., 41 (1978) 225.

    Article  ADS  Google Scholar 

  39. Bahcall J. N., Serenelli A. M. and Basu S., Astrophys. J., 621 (2005) L85 [astro-ph/0412440].

    Article  ADS  Google Scholar 

  40. For a review, see e.g. Nakamura K., Petcov S., in K. Nakamura et al. (Particle data group collaboration), J. Phys. G, 37 (2010) 075021.

    Article  ADS  Google Scholar 

  41. Aharmim B. et al. (SNO Collaboration), Phys. Rev. C, 81 (2010) 055504 [arXiv:0910. 2984 [nucl-ex]].

    Article  ADS  Google Scholar 

  42. Wolfenstein L., Phys. Rev. D, 17 (1978) 2369.

    Article  ADS  Google Scholar 

  43. Mikheyev S. P. and Smirnov A. Y., Prog. Part. Nucl. Phys., 23 (1989) 41.

    Article  ADS  Google Scholar 

  44. Bahcall N. and Davis R. jr., Science, 1 (1976) 91, 264; Cleveland B. T., Daily T., Davis R. jr. et al., Astrophy. J., 496 (1998) 505.

    Article  ADS  Google Scholar 

  45. Hampel W., Handt J., Heusser G. et al. (GALLEX Colaboration), Phys. Lett. B, 447 (1999) 127; Altmann M., Balata M., Belli P. et al. (GALLEX Colaboration), Phys. Lett. B, 616 (2005) 174.

    Article  ADS  Google Scholar 

  46. Abdurashitov J. N., Veretenkin E. P., Vermul V. M. et al. (Sage Collaboration), J. Exp. Theor. Phys., 95 (2002) 181.

    Article  ADS  Google Scholar 

  47. Eguchi K. et al. (KamLAND Collaboration), Phys. Rev. Lett., 90 (2003) 021802 [hep-ex/0212021].

    Article  ADS  Google Scholar 

  48. Abe S. et al. (KamLAND Collaboration), Phys. Rev. Lett., 100 (2008) 221803 [arXiv:0801.4589 [hep-ex]].

    Article  ADS  Google Scholar 

  49. Acquafredda R., Adam T., Agafonova N., Alvarez Sanchez P., Ambrosio M., Anokhina A., Aoki S., Ariga A. et al., JINST, 4 (2009) P04018.

    Article  ADS  Google Scholar 

  50. See, e.g., Dzhatdoev T. A. et al. (on behalf of the OPERA Collaboration), arXiv:1402.3861 [hep-ex].

  51. De Lellis G., private communication.

  52. Capozzi F., Fogli G. L., Lisi E., Marrone A., Montanino D. and Palazzo A., arXiv:1312.2878 [hep-ph].

  53. Broncano A., Gavela M. B. and Jenkins E. E., Phys. Lett. B, 552 (2003) 177 (636 (2006) 330(E)) Jenkins E. and Manohar A. V., Nucl. Phys. B, 792 (2008) 187.

    Article  ADS  Google Scholar 

  54. Casas J. A. and Ibarra A., Nucl. Phys. B, 618 (2001) 171.

    Article  ADS  Google Scholar 

  55. Froggatt C. D. and Nielsen H. B., in “Bled 1998, What comes beyond the standard model” 29–39 [hep-ph/9905445].

  56. Michel L. and Radicati L. A., Proceedings of the Fifth Coral Gables Conference on Symmetry principles at High Energy, edited by Kursunoglu B. et al. (W. H. Benjamin, Inc. New York) 1965; Annu Phys. (N.Y.), 66 (1971) 758.

    Article  ADS  Google Scholar 

  57. Cabibbo N. and Maiani L., in Evolution of Particle Physics (Academic Press) 1970, p. 50, App. I.

  58. Branco G. C., Rebelo M. N., Silva-Marcos J. I., Phys. Rev. Lett., 82 (1999) 683; Branco G. C., Rebelo M. N., Silva-Marcos J. I. and Wegman Daniel, arXiv:1405.5120 [hep-ph].

    Article  ADS  Google Scholar 

  59. Alonso R., Gavela M. B., HernÀndez D., Merlo L. and Rigolin S., JHEP, 1308 (2013) 069 [arXiv:1306.5922, arXiv:1306.5922 [hep-ph]].

    Article  ADS  Google Scholar 

  60. Altarelli G. and Feruglio F., Rev. Mod. Phys., 82 (2010) 2701 [arXiv:1002.0211 [hep-ph]]; Altarelli G., arXiv:1404.3859 [hep-ph].

    Article  ADS  Google Scholar 

  61. King S. F. and Luhn C., Rep. Prog. Phys., 76 (2013) 056201 [arXiv:1301.1340 [hep-ph]].

    Article  ADS  Google Scholar 

  62. Jenkins E. E. and Manohar A. V., JHEP, 0910 (2009) 094 [arXiv:0907.4763 [hep-ph]] and references within; Hanany A., Jenkins E. E., Manohar A. V. and Torri G., JHEP, 1103 (2011) 096 [arXiv:1010.3161 [hep-ph]].

    Article  ADS  Google Scholar 

  63. See, e.g., the article by Bapat R. B. and Raghavan T. E. S., Nonnegative Matrices and Applications, in Encyclopedia of Mathematics and its Applications, Vol. 64 (Cambridge University Press, Cambridge) 1997.

  64. Alonso R. and Thesis Ph. D., arXiv:1307.1904 [hep-ph].

  65. Alonso R., Gavela M., Hernandez D. and Merlo L., Phys. Lett. B, 715 (2012) 194.

    Article  ADS  Google Scholar 

  66. Pascoli S., private communication.

  67. Ade P. A. R. et al. (Planck Collaboration), arXiv:1303.5080 [astro-ph.CO].

  68. Grinstein B., Redi M. and Villadoro G., JHEP, 1011 (2010) 067.

    Article  ADS  Google Scholar 

  69. Cabibbo N. and Gatto R., Phys. Rev., 116 (1959) 1134; Cabibbo N., Gatto R. and Zemach C., Nuovo Cimento, 16 (1960) 168.

    Article  Google Scholar 

  70. Feinberg G., Kabir P. and Weinberg S., Phys. Rev. Lett., 3 (1959) 527.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiani, L. Selected topics in Majorana neutrino physics. Riv. Nuovo Cim. 37, 417–466 (2014). https://doi.org/10.1393/ncr/i2014-10103-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2014-10103-9

Navigation