Skip to main content
Log in

Thermal right-handed neutrino production rate in the non-relativistic regime

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the next-to-leading order thermal production rate of heavy right-handed neutrinos in the non-relativistic regime m top ≲ πT ≪ M, where m top refers to the electroweak scale. Rephrasing the problem in an OPE language and making use of different techniques than a previous analysis by Salvio et al, we confirm the general structure of their result and many of the coefficients. We also extend the analysis to the next order in the non-relativistic expansion, thereby revealing the leading non-trivial momentum dependence, as well as to NNLO in couplings, revealing the leading sensitivity to thermal resummations. Our results are expressed as a sum of simple “master” structures, which renders them a suitable starting point for determining the next-to-leading order rate also in the relativistic regime πT ∼ M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.D. Steffen, Dark matter candidatesAxions, neutralinos, gravitinos and axinos, Eur. Phys. J. C 59 (2009) 557 [arXiv:0811.3347] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0901.0011] [INSPIRE].

    Article  ADS  Google Scholar 

  3. M. Fukugita and T. Yanagida, Baryogenesis without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Google Scholar 

  4. W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Anisimov, D. Besak and D. Bödeker, Thermal production of relativistic Majorana neutrinos: strong enhancement by multiple soft scattering, JCAP 03 (2011) 042 [arXiv:1012.3784] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Salvio, P. Lodone and A. Strumia, Towards leptogenesis at NLO: the right-handed neutrino interaction rate, JHEP 08 (2011) 116 [arXiv:1106.2814] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating parameter in leptogenesis, Phys. Rev. D 81 (2010) 085028 [arXiv:1002.0331] [INSPIRE].

    ADS  Google Scholar 

  9. M. Beneke, B. Garbrecht, C. Fidler, M. Herranen and P. Schwaller, Flavoured leptogenesis in the CTP formalism, Nucl. Phys. B 843 (2011) 177 [arXiv:1007.4783] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C.S. Fong, M. Gonzalez-Garcia and J. Racker, CP violation from scatterings with gauge bosons in leptogenesis, Phys. Lett. B 697 (2011) 463 [arXiv:1010.2209] [INSPIRE].

    ADS  Google Scholar 

  11. J.-S. Gagnon and M. Shaposhnikov, Baryon asymmetry of the universe without Boltzmann or Kadanoff-Baym equations, Phys. Rev. D 83 (2011) 065021 [arXiv:1012.1126] [INSPIRE].

    ADS  Google Scholar 

  12. A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Quantum leptogenesis I, Annals Phys. 326 (2011) 1998 [arXiv:1012.5821] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. C. Kiessig and M. Plümacher, Hard-thermal-loop corrections in leptogenesis I: CP-asymmetries, arXiv:1111.1231 [INSPIRE].

  14. K.G. Wilson and W. Zimmermann, Operator product expansions and composite field operators in the general framework of quantum field theory, Commun. Math. Phys. 24 (1972) 87 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S. Caron-Huot, Asymptotics of thermal spectral functions, Phys. Rev. D 79 (2009) 125009 [arXiv:0903.3958] [INSPIRE].

    ADS  Google Scholar 

  16. M. Laine, M. Vepsäläinen and A. Vuorinen, Ultraviolet asymptotics of scalar and pseudoscalar correlators in hot Yang-Mills theory, JHEP 10 (2010) 010 [arXiv:1008.3263] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Y. Schröder, M. Vepsäläinen, A. Vuorinen and Y. Zhu, The ultraviolet limit and sum rule for the shear correlator in hot Yang-Mills theory, JHEP 12 (2011) 035 [arXiv:1109.6548] [INSPIRE].

    Article  ADS  Google Scholar 

  18. T. Asaka, M. Laine and M. Shaposhnikov, On the hadronic contribution to sterile neutrino production, JHEP 06 (2006) 053 [hep-ph/0605209] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Laine and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry, JCAP 06 (2008) 031 [arXiv:0804.4543] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Le Bellac, Thermal field theory, Cambridge University Press, Cambridge U.K. (2000).

    Google Scholar 

  21. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. J.G. Körner, N. Nasrallah and K. Schilcher, Evaluation of the flavor changing vertex b → sH using the Breitenlohner-Maison-t Hooft-Veltman γ5 scheme, Phys. Rev. D 41 (1990) 888 [INSPIRE].

    ADS  Google Scholar 

  24. A.J. Buras and P.H. Weisz, QCD nonleading corrections to weak decays in dimensional regularization andt Hooft-Veltman schemes, Nucl. Phys. B 333 (1990) 66 [INSPIRE].

    Article  ADS  Google Scholar 

  25. S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].

    ADS  Google Scholar 

  26. S.A. Larin and J.A.M. Vermaseren, The \( \alpha_s^3 \) corrections to the Bjorken sum rule for polarized electroproduction and to the Gross-Llewellyn Smith sum rule, Phys. Lett. B 259 (1991) 345 [INSPIRE].

    ADS  Google Scholar 

  27. P.B. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].

    ADS  Google Scholar 

  28. M. Laine, A. Vuorinen and Y. Zhu, Next-to-leading order thermal spectral functions in the perturbative domain, JHEP 09 (2011) 084 [arXiv:1108.1259] [INSPIRE].

    Article  ADS  Google Scholar 

  29. K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3D physics and the electroweak phase transition: perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.I. Kapusta, Quantum chromodynamics at high temperature, Nucl. Phys. B 148 (1979) 461 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laine.

Additional information

ArXiv ePrint: 1112.1205

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laine, M., Schröder, Y. Thermal right-handed neutrino production rate in the non-relativistic regime. J. High Energ. Phys. 2012, 68 (2012). https://doi.org/10.1007/JHEP02(2012)068

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)068

Keywords

Navigation