Skip to main content
Log in

Scalar septuplet dark matter and enhanced h → γγ decay rate

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Inspired by recent results on the Higgs search from ATLAS and CMS, we extend the SM with complex septuplet scalars. The lightest neutral component of the septuplets is a natural cold dark Matter candidate and the charged components can contribute to the h → γγ decay rate, providing a significant enhancement factor. The dark matter phenomenology and possible collider signatures of the model are investigated. We find a dark matter candidate with mass around 70 GeV consistent with astrophysical and direct detection constraints. In the meanwhile, the enhancement factor of h → γγ decay rate can be in the range 1.5 ~ 1.65.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. M. Carena, I. Low and C.E. Wagner, Implications of a Modified Higgs to Diphoton Decay Width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II Seesaw Model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Kanemura and K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D 85 (2012) 115009 [arXiv:1201.6287] [INSPIRE].

    ADS  Google Scholar 

  6. A. Akeroyd and S. Moretti, Enhancement of H → γγ from doubly charged scalars in the Higgs Triplet Model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].

    ADS  Google Scholar 

  7. L. Wang and X.-F. Han, The recent Higgs boson data and Higgs triplet model with vector-like quark, Phys. Rev. D 86 (2012) 095007 [arXiv:1206.1673] [INSPIRE].

    ADS  Google Scholar 

  8. W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on New Scalars from the LHC 125 GeV Higgs Signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].

    ADS  Google Scholar 

  9. I. Dorsner, S. Fajfer, A. Greljo and J.F. Kamenik, Higgs Uncovering Light Scalar Remnants of High Scale Matter Unification, arXiv:1208.1266 [INSPIRE].

  10. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  11. D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Cirelli and A. Strumia, Minimal Dark Matter: Model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].

    Article  ADS  Google Scholar 

  14. K. Hally, H.E. Logan and T. Pilkington, Constraints on large scalar multiplets from perturbative unitarity, Phys. Rev. D 85 (2012) 095017 [arXiv:1202.5073] [INSPIRE].

    ADS  Google Scholar 

  15. T. Hambye, F.-S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [Erratum ibid. 1005 (2010) 066] [arXiv:0903.4010] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  17. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  18. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  19. WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  20. N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  21. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  22. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati and A. Semenov, Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, arXiv:1207.6082 [INSPIRE].

  25. A. Pukhov, A. Belyaev and N, Christensen, CalcHEP - a package for calculation of Feynman diagrams and integration over multi-particle phase space, http://theoty.sinp.msu.ru/˜pukhov/calchep.html.

  26. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  27. ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7\;TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  28. CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  29. ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7\;TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  30. CMS collaboration, Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  31. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, SCIPP-89/13 Addison-Wesley, Reading, MA (1990).

  34. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, M. Peyranere, L. Rahili and J. Ramadan, The Higgs Potential in the Type II Seesaw Model, Phys. Rev. D 84 (2011) 095005 [arXiv:1105.1925] [INSPIRE].

    ADS  Google Scholar 

  37. L3 collaboration, M. Acciarri et al., Search for charged Higgs bosons in e + e collisions at center center-of-mass energies up to 202-GeV, Phys. Lett. B 496 (2000) 34 [hep-ex/0009010] [INSPIRE].

    ADS  Google Scholar 

  38. ALEPH collaboration, R. Barate et al., Search for charged Higgs bosons in e + e collisions at energies up to \( \sqrt{s}=189\;TeV \), Phys. Lett. B 487 (2000) 253 [hep-ex/0008005] [INSPIRE].

    ADS  Google Scholar 

  39. ATLAS collaboration, Search for charged Higgs bosons decaying via H + → τ ν in top quark pair events using pp collision data at \( \sqrt{s}=7\;TeV \) with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].

    ADS  Google Scholar 

  40. CMS collaboration, S. Chatrchyan et al., Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7\;TeV \), JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Yang and Q.-S. Yan, Searching for Heavy Charged Higgs Boson with Jet Substructure at the LHC, JHEP 02 (2012) 074 [arXiv:1111.4530] [INSPIRE].

    Article  ADS  Google Scholar 

  42. ATLAS collaboration, Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the Standard Model with the ATLAS detector, Phys. Rev. D 85 (2012) 032004 [arXiv:1201.1091] [INSPIRE].

    ADS  Google Scholar 

  43. CMS collaboration, A search for a doubly-charged Higgs boson in pp collisions at \( \sqrt{s}=7\;TeV \), arXiv:1207.2666 [INSPIRE].

  44. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=7\;TeV \) pp collisions with the ATLAS detector, arXiv:1208.3144 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Yang.

Additional information

ArXiv ePrint: 1208.3949

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y., Chao, W. & Yang, S. Scalar septuplet dark matter and enhanced h → γγ decay rate. J. High Energ. Phys. 2012, 43 (2012). https://doi.org/10.1007/JHEP12(2012)043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)043

Keywords

Navigation