Skip to main content
Log in

Searching for heavy charged Higgs boson with jet substructure at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the heavy charged Higgs boson (from 800 GeV to 1500 GeV in this study) in production associated with a top quark at the LHC with the collision energy \( \sqrt {s} = 14\,TeV \). Such a heavy charged Higgs boson can dominantly decay into a top quark and a bottom quark due to its large Yukawa couplings, like in MSSM. To suppress background events and to confirm the signal, we reconstruct the mass bumps of the heavy charged Higgs boson and the associated top quark. For this purpose, we propose a hybrid-R reconstruction method which utilizes the top tagging technique, a jet substructure technique developed for highly boosted massive particles. By using the full hadronic mode of pp → H ± t → ttb as a test field, we find that this method can greatly reduce the combinatorics in the full reconstruction and can successfully reduce background events down to a controlled level. The sensitivity of LHC to the heavy charged Higgs boson with two b taggings is studied and a 9.5σ significance can be achieved when m H  ± = 1 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].

    Google Scholar 

  2. L3 collaboration, M. Acciarri et al., Search for charged Higgs bosons in e + e collisions at center center-of-mass energies up to 202 GeV, Phys. Lett. B 496 (2000) 34 [hep-ex/0009010] [INSPIRE].

    ADS  Google Scholar 

  3. ALEPH collaboration, R. Barate et al., Search for charged Higgs bosons in e + e collisions at energies up to \( \sqrt {s} = {189}\,GeV \), Phys. Lett. B 487 (2000) 253 [hep-ex/0008005] [INSPIRE].

    ADS  Google Scholar 

  4. CDF collaboration, A. Abulencia et al., Search for charged Higgs bosons from top quark decays in \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96}\,TeV \), Phys. Rev. Lett. 96 (2006) 042003 [hep-ex/0510065] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D0 collaboration, V.M. Abazov et al., Search for charged Higgs bosons in top quark decays, Phys. Lett. B 682 (2009) 278 [arXiv:0908.1811] [INSPIRE].

    ADS  Google Scholar 

  6. CDF collaboration, T. Aaltonen et al., Search for charged Higgs bosons in decays of top quarks in pp collisions at \( \sqrt {s} = {1}.{96}\,TeV \), Phys. Rev. Lett. 103 (2009) 101803 [arXiv:0907.1269] [INSPIRE].

    Article  ADS  Google Scholar 

  7. D0 collaboration, V.M. Abazov et al., Search for charged Higgs bosons in decays of top quarks, Phys. Rev. D 80 (2009) 051107 [arXiv:0906.5326] [INSPIRE].

    ADS  Google Scholar 

  8. CMS collaboration, CMS, the Compact Muon Solenoid: technical proposal, CERN-LHCC-94-38 (1994).

  9. ATLAS collaboration, ATLAS: technical proposal for a general-purpose pp experiment at the Large Hadron Collider at CERN, CERN-LHCC-94-43 (1994) [INSPIRE].

  10. G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C.K. Vermilion, Jet substructure at the Large Hadron Collider: harder, better, faster, stronger, arXiv:1101.1335 [INSPIRE].

  12. A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  13. L.G. Almeida, R. Alon and M. Spannowsky, Structure of fat jets at the Tevatron and beyond, arXiv:1110.3684 [INSPIRE].

  14. J.F. Gunion, Detecting the tb decays of a charged Higgs boson at a hadron supercollider, Phys. Lett. B 322 (1994) 125 [hep-ph/9312201] [INSPIRE].

    ADS  Google Scholar 

  15. V.D. Barger, R.J. Phillips and D.P. Roy, Heavy charged Higgs signals at the LHC, Phys. Lett. B 324 (1994) 236 [hep-ph/9311372] [INSPIRE].

    ADS  Google Scholar 

  16. S. Moretti and D.P. Roy, Detecting heavy charged Higgs bosons at the LHC with triple b tagging, Phys. Lett. B 470 (1999) 209 [hep-ph/9909435] [INSPIRE].

    ADS  Google Scholar 

  17. S. Moretti and K. Odagiri, Production of charged Higgs bosons of the minimal supersymmetric standard model in b quark initiated processes at the Large Hadron Collider, Phys. Rev. D 55 (1997) 5627 [hep-ph/9611374] [INSPIRE].

    ADS  Google Scholar 

  18. C.S. Huang and S.-H. Zhu, Supersymmetric Higgs bosons discovery potential at hadron colliders through bg channel, Phys. Rev. D 60 (1999) 075012 [hep-ph/9812201] [INSPIRE].

    ADS  Google Scholar 

  19. A. Belyaev, D. Garcia, J. Guasch and J. Solà, Prospects for heavy supersymmetric charged Higgs boson searches at hadron colliders, JHEP 06 (2002) 059 [hep-ph/0203031] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D.J. Miller, S. Moretti, D.P. Roy and W.J. Stirling, Detecting heavy charged Higgs bosons at the CERN LHC with four b quark tags, Phys. Rev. D 61 (2000) 055011 [hep-ph/9906230] [INSPIRE].

    ADS  Google Scholar 

  21. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  23. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

    ADS  Google Scholar 

  24. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].

  26. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  27. W. Skiba and D. Tucker-Smith, Using jet mass to discover vector quarks at the LHC, Phys. Rev. D 75 (2007) 115010 [hep-ph/0701247] [INSPIRE].

    ADS  Google Scholar 

  28. B. Holdom, The heavy quark search at the LHC, JHEP 08 (2007) 069 [arXiv:0705.1736] [INSPIRE].

    Article  ADS  Google Scholar 

  29. K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [INSPIRE].

    ADS  Google Scholar 

  30. S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multi-jet cross-sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].

    ADS  Google Scholar 

  31. M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: a comparative study, Z. Phys. C 62 (1994) 127 [INSPIRE].

    ADS  Google Scholar 

  32. J.M. Butterworth, B.E. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].

    ADS  Google Scholar 

  33. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M.M. Nojiri and M. Takeuchi, Study of the top reconstruction in top-partner events at the LHC, JHEP 10 (2008) 025 [arXiv:0802.4142] [INSPIRE].

    Article  ADS  Google Scholar 

  36. T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].

    ADS  Google Scholar 

  39. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].

    ADS  Google Scholar 

  40. J.M. Butterworth, A. Davison, E. Ozcan and P. Sherwood, Ysplitter: an Athena tool for studying jet substructure, ATL-PHYS-INT-2007-015 (2007).

  41. ATLAS collaboration, ATLAS sensitivity to the standard model Higgs in the HW and HZ channels at high transverse momenta, ATL-PHYS-PUB-2009-088 (2009).

  42. G. Brooijmans, High p T hadronic top quark identification. Part I: Jet mass and YSplitter, ATL-COM-PHYS-2008-001 (2008).

  43. ATLAS collaboration, Reconstruction of high mass \( t\overline t \) resonances in the lepton + jets channel, ATL-PHYS-PUB-2009-081 (2009).

  44. CMS collaboration, A Cambridge-Aachen (C-A) based jet algorithm for boosted top-jet tagging, CMS-PAS-JME-09-001 (2009) [INSPIRE].

  45. D. Krohn, J. Thaler and L.-T. Wang, Jets with variable R, JHEP 06 (2009) 059 [arXiv:0903.0392] [INSPIRE].

    Article  ADS  Google Scholar 

  46. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [INSPIRE].

    ADS  Google Scholar 

  47. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering Higgs bosons of the MSSM using jet substructure, Phys. Rev. D 82 (2010) 095012 [arXiv:1006.1656] [INSPIRE].

    ADS  Google Scholar 

  48. J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  49. L.G. Almeida et al., Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [INSPIRE].

    ADS  Google Scholar 

  51. T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Plehn, M. Spannowsky and M. Takeuchi, Boosted semileptonic tops in stop decays, JHEP 05 (2011) 135 [arXiv:1102.0557] [INSPIRE].

    Article  ADS  Google Scholar 

  53. G.D. Kribs, A. Martin and T.S. Roy, Higgs boson discovery through top-partners decays using jet substructure, Phys. Rev. D 84 (2011) 095024 [arXiv:1012.2866] [INSPIRE].

    ADS  Google Scholar 

  54. V. Barger and P. Huang, Hollow cone sieve for top tagging, arXiv:1110.2214 [INSPIRE].

  55. A.A. Barrientos Bendezú and B.A. Kniehl, W ± H associated production at the Large Hadron Collider, Phys. Rev. D 59 (1999) 015009 [hep-ph/9807480] [INSPIRE].

    ADS  Google Scholar 

  56. S. Moretti and K. Odagiri, The phenomenology of W ± H production at the Large Hadron Collider, Phys. Rev. D 59 (1999) 055008 [hep-ph/9809244] [INSPIRE].

    ADS  Google Scholar 

  57. O. Brein, W. Hollik and S. Kanemura, The MSSM prediction for W ± H production by gluon fusion, Phys. Rev. D 63 (2001) 095001 [hep-ph/0008308] [INSPIRE].

    ADS  Google Scholar 

  58. S.-S. Bao, X. Gong, H.-L. Li, S.-Y. Li and Z.-G. Si, Identify charged Higgs boson in W ± H associated production at LHC, arXiv:1112.0086 [INSPIRE].

  59. S. Kanemura and C.P. Yuan, Testing supersymmetry in the associated production of CP odd and charged Higgs bosons, Phys. Lett. B 530 (2002) 188 [hep-ph/0112165] [INSPIRE].

    ADS  Google Scholar 

  60. Q.-H. Cao, S. Kanemura and C.P. Yuan, Associated production of CP odd and charged Higgs bosons at hadron colliders, Phys. Rev. D 69 (2004) 075008 [hep-ph/0311083] [INSPIRE].

    ADS  Google Scholar 

  61. E. Asakawa, O. Brein and S. Kanemura, Enhancement of W ± H production at hadron colliders in the two Higgs doublet model, Phys. Rev. D 72 (2005) 055017 [hep-ph/0506249] [INSPIRE].

    ADS  Google Scholar 

  62. D. Eriksson, S. Hesselbach and J. Rathsman, Associated charged Higgs and W boson production in the MSSM at the CERN Large Hadron Collider, Eur. Phys. J. C 53 (2008) 267 [hep-ph/0612198] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S.S. Willenbrock, Pair production of supersymmetric charged Higgs bosons, Phys. Rev. D 35 (1987) 173 [INSPIRE].

    ADS  Google Scholar 

  64. A. Krause, T. Plehn, M. Spira and P.M. Zerwas, Production of charged Higgs boson pairs in gluon-gluon collisions, Nucl. Phys. B 519 (1998) 85 [hep-ph/9707430] [INSPIRE].

    Article  ADS  Google Scholar 

  65. A.A. Barrientos Bendezú and B.A. Kniehl, H + H pair production at the Large Hadron Collider, Nucl. Phys. B 568 (2000) 305 [hep-ph/9908385] [INSPIRE].

    Article  ADS  Google Scholar 

  66. O. Brein and W. Hollik, Pair production of charged MSSM Higgs bosons by gluon fusion, Eur. Phys. J. C 13 (2000) 175 [hep-ph/9908529] [INSPIRE].

    Article  ADS  Google Scholar 

  67. F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    Article  ADS  Google Scholar 

  69. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Cacciari, G. Salam and G. Soyez, FastJet, http://fastjet.fr/.

  71. P.-A. Delsart, K. Geerlings, J. Huston, B. Martin and C.K. Vermilion, SpartyJet, http://projects.hepforge.org/spartyjet/.

  72. M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].

    Article  ADS  Google Scholar 

  73. M.-A. Pleier, Review of properties of the top quark from measurements at the Tevatron, Int. J. Mod. Phys. A 24 (2009) 2899 [arXiv:0810.5226] [INSPIRE].

    ADS  Google Scholar 

  74. CDF collaboration, T. Aaltonen et al., Measurement of the \( p\overline p \to t\overline t \) production cross-section and the top quark mass at \( \sqrt {s} = {1}.{96}\,TeV \) in the all-hadronic decay mode, Phys. Rev. D 76 (2007) 072009 [arXiv:0706.3790] [INSPIRE].

    ADS  Google Scholar 

  75. D0 collaboration, V.M. Abazov et al., Measurement of the \( p\overline p \to t\overline t \) production cross section at \( \sqrt {s} = {1}.{96}\,TeV \) in the fully hadronic decay channel, Phys. Rev. D 76 (2007) 072007 [hep-ex/0612040] [INSPIRE].

    ADS  Google Scholar 

  76. Y. Cui, Z. Han and M.D. Schwartz, W-jet tagging: optimizing the identification of boosted hadronically-decaying W bosons, Phys. Rev. D 83 (2011) 074023 [arXiv:1012.2077] [INSPIRE].

    ADS  Google Scholar 

  77. J. Gallicchio et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].

    Article  ADS  Google Scholar 

  78. J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].

    Article  ADS  Google Scholar 

  79. B. Holdom and Q.-S. Yan, The bsearch at the LHC, Phys. Rev. D 84 (2011) 094012 [arXiv:1004.3031] [INSPIRE].

    ADS  Google Scholar 

  80. B. Holdom and Q.-S. Yan, Searches for the tof a fourth family, Phys. Rev. D 83 (2011) 114031 [arXiv:1101.3844] [INSPIRE].

    ADS  Google Scholar 

  81. A. Ali, F. Barreiro and J. Llorente, Improved sensitivity to charged Higgs searches in top quark decays t → bH + → b+ν τ ) at the LHC using τ polarisation and multivariate techniques, Eur. Phys. J. C 71 (2011) 1737 [arXiv:1103.1827] [INSPIRE].

    Article  ADS  Google Scholar 

  82. S.-H. Zhu, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN Large Hadron Collider, Phys. Rev. D 67 (2003) 075006 [hep-ph/0112109] [INSPIRE].

    ADS  Google Scholar 

  83. T. Plehn, Charged Higgs boson production in bottom gluon fusion, Phys. Rev. D 67 (2003) 014018 [hep-ph/0206121] [INSPIRE].

    ADS  Google Scholar 

  84. E.L. Berger, T. Han, J. Jiang and T. Plehn, Associated production of a top quark and a charged Higgs boson, Phys. Rev. D 71 (2005) 115012 [hep-ph/0312286] [INSPIRE].

    ADS  Google Scholar 

  85. L.G. Jin, C.S. Li, R.J. Oakes and S.H. Zhu, Supersymmetric electroweak corrections to charged Higgs boson production in association with a top quark at hadron colliders, Phys. Rev. D 62 (2000) 053008 [hep-ph/0003159] [INSPIRE].

    ADS  Google Scholar 

  86. M. Beccaria, G. Macorini, L. Panizzi, F.M. Renard and C. Verzegnassi, Associated production of a charged Higgs boson and top quark at LHC: the role of the complete electroweak supersymmetric contribution, Phys. Rev. D 80 (2009) 053011 [arXiv:0908.1332] [INSPIRE].

    ADS  Google Scholar 

  87. N. Kidonakis, Next-to-next-to-next-to-leading-order soft-gluon corrections in hard-scattering processes near threshold, Phys. Rev. D 73 (2006) 034001 [hep-ph/0509079] [INSPIRE].

    ADS  Google Scholar 

  88. N. Kidonakis, Charged Higgs production via bg → tH at the LHC, JHEP 05 (2005) 011 [hep-ph/0412422] [INSPIRE].

    Article  ADS  Google Scholar 

  89. N. Kidonakis, Higher order corrections to H ± production, PoS(CHARGED2008)003 [arXiv:0811.4757] [INSPIRE].

  90. Q.-S. Yan and S. Yang, Discovering charged Higgs boson with top taggers, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Yang.

Additional information

ArXiv ePrint: 1111.4530

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Yan, QS. Searching for heavy charged Higgs boson with jet substructure at the LHC. J. High Energ. Phys. 2012, 74 (2012). https://doi.org/10.1007/JHEP02(2012)074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)074

Keywords

Navigation