Skip to main content
Log in

Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The antenna subtraction method handles real radiation contributions in higher order corrections to jet observables. The method is based on antenna functions, which encapsulate all unresolved radiation between a pair of hard radiator partons. To apply this method to compute hadron collider observables, initial-initial antenna functions with both radiators in the initial state are required. In view of extending the antenna subtraction method to next-to-next-to-leading order (NNLO) calculations at hadron colliders, we derive the one-loop initial-initial antenna functions in unintegrated and integrated form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press, Cambridge U.K. (1996).

    Book  Google Scholar 

  2. G. Dissertori, I.G. Knowles and M. Schmelling, Quantum chromodynamics: high energy experiments and theory, Oxford University Press, Oxford U.K.(2003).

    Google Scholar 

  3. CDF collaboration, T. Aaltonen et al., Measurement of the inclusive jet cross section at the Fermilab Tevatron \(p\overline p\) collider using a cone-based jet algorithm, Phys. Rev. D 78 (2008) 052006 [Erratum ibid. D 79 (2009) 119902] [arXiv:0807.2204] [INSPIRE].

    ADS  Google Scholar 

  4. D0 collaboration, V. Abazov et al., Measurement of the inclusive jet cross-section in \(p\overline p\) collisions at s 91/2) = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 062001 [arXiv:0802.2400] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D0 collaboration, V. Abazov et al., Determination of the strong coupling constant from the inclusive jet cross section in \(p\overline p\) collisions at \(\sqrt {s} = {1}.{96}\) TeV, Phys. Rev. D 80 (2009) 111107 [arXiv:0911.2710] [INSPIRE].

    ADS  Google Scholar 

  6. ATLAS collaboration, G. Aad et al., Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1512 [arXiv:1009.5908] [INSPIRE].

    ADS  Google Scholar 

  7. CMS collaboration, S. Chatrchyan et al., Measurement of the differential dijet production cross section in proton-proton collisions at \(\sqrt {s} = {7}\) TeV, Phys. Lett. B 700 (2011) 187 [arXiv:1104.1693] [INSPIRE].

    ADS  Google Scholar 

  8. CMS collaboration, S. Chatrchyan et al., Measurement of the inclusive jet cross section in pp collisions at \(\sqrt {s} = {7}\) TeV, Phys. Rev. Lett. 107 (2011) 132001 [arXiv:1106.0208] [INSPIRE].

    Article  ADS  Google Scholar 

  9. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319 [hep-ph/9901201] [INSPIRE].

    Article  ADS  Google Scholar 

  11. D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z. Bern, V. Del Duca and C.R. Schmidt, The infrared behavior of one loop gluon amplitudes at next-to-next-to-leading order, Phys. Lett. B 445 (1998) 168 [hep-ph/9810409] [INSPIRE].

    ADS  Google Scholar 

  13. Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].

    ADS  Google Scholar 

  14. S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D.A. Kosower, All orders singular emission in gauge theories, Phys. Rev. Lett. 91 (2003) 061602 [hep-ph/0301069] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Weinzierl, Subtraction terms for one loop amplitudes with one unresolved parton, JHEP 07 (2003) 052 [hep-ph/0306248] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Anastasiou, Z. Bern, L.J. Dixon and D. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop ggg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Badger and E. Glover, Two loop splitting functions in QCD, JHEP 07 (2004) 040 [hep-ph/0405236] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Gehrmann-De Ridder and E. Glover, A complete O(αα s ) calculation of the photon + 1 jet rate in e + e annihilation, Nucl. Phys. B 517 (1998) 269 [hep-ph/9707224] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.M. Campbell and E. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].

    ADS  Google Scholar 

  23. S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].

    Article  Google Scholar 

  24. F.A. Berends and W. Giele, Multiple soft gluon radiation in parton processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].

    Article  ADS  Google Scholar 

  25. V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Birthwright, E. Glover, V. Khoze and P. Marquard, Multi-gluon collinear limits from MHV diagrams, JHEP 05 (2005) 013 [hep-ph/0503063] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. Z. Kunszt and D.E. Soper, Calculation of jet cross-sections in hadron collisions at order \(\alpha_s^3\), Phys. Rev. D 46 (1992) 192 [INSPIRE].

    ADS  Google Scholar 

  28. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].

    ADS  Google Scholar 

  32. D.A. Kosower, Antenna factorization in strongly ordered limits, Phys. Rev. D 71 (2005) 045016 [hep-ph/0311272] [INSPIRE].

    ADS  Google Scholar 

  33. G. Somogyi, Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D.A. Kosower, Multiple singular emission in gauge theories, Phys. Rev. D 67 (2003) 116003 [hep-ph/0212097] [INSPIRE].

    ADS  Google Scholar 

  35. S. Weinzierl, Subtraction terms at NNLO, JHEP 03 (2003) 062 [hep-ph/0302180] [INSPIRE]

    Article  ADS  Google Scholar 

  36. W.B. Kilgore, Subtraction terms for hadronic production processes at next-to-next-to-leading order, Phys. Rev. D 70 (2004) 031501 [hep-ph/0403128] [INSPIRE].

    ADS  Google Scholar 

  37. S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP 06 (2005) 010 [hep-ph/0411399] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226] [INSPIRE].

    Article  ADS  Google Scholar 

  39. G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP 01 (2007) 070 [hep-ph/0609042] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms. I., JHEP 08 (2008) 042 [arXiv:0807.0509] [INSPIRE].

    Article  ADS  Google Scholar 

  42. U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. I., JHEP 09 (2008) 107 [arXiv:0807.0514] [INSPIRE].

    Article  ADS  Google Scholar 

  43. P. Bolzoni, S.-O. Moch, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections. II., JHEP 08 (2009) 079 [arXiv:0905.4390] [INSPIRE].

    Article  ADS  Google Scholar 

  44. P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01 (2011) 059 [arXiv:1011.1909] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    ADS  Google Scholar 

  47. M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C. Anastasiou, F. Herzog and A. Lazopoulos, On the factorization of overlapping singularities at NNLO, JHEP 03 (2011) 038 [arXiv:1011.4867] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Infrared structure of e + e → 2 jets at NNLO, Nucl. Phys. B 691 (2004) 195 [hep-ph/0403057] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].

    ADS  Google Scholar 

  52. A. Gehrmann-De Ridder, T. Gehrmann and E. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].

    ADS  Google Scholar 

  53. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e + e  → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Jet rates in electron-positron annihilation at O \((\alpha_s^3)\) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].

    Article  ADS  Google Scholar 

  55. S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S. Weinzierl, The infrared structure of e + e  → 3 jets at NNLO reloaded, JHEP 07 (2009) 009 [arXiv:0904.1145] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S. Weinzierl, Jet algorithms in electron-positron annihilation: perturbative higher order predictions, Eur. Phys. J. C 71 (2011) 1565 [Erratum ibid. C 71 (2011) 1717] [arXiv:1011.6247] [INSPIRE].

    ADS  Google Scholar 

  58. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO moments of event shapes in e + e annihilation, JHEP 05 (2009) 106 [arXiv:0903.4658] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. Weinzierl, Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev. D 80 (2009) 094018 [arXiv:0909.5056] [INSPIRE].

    ADS  Google Scholar 

  63. G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E. Glover, G. Heinrich, et al., First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in e + e annihilations, JHEP 02 (2008) 040 [arXiv:0712.0327] [INSPIRE].

    Article  ADS  Google Scholar 

  64. G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E. Glover, G. Heinrich, et al., Determination of the strong coupling constant using matched NNLO + NLLA predictions for hadronic event shapes in e + e annihilations, JHEP 08 (2009) 036 [arXiv:0906.3436] [INSPIRE].

    Article  ADS  Google Scholar 

  65. G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E. Glover, G. Heinrich, et al., Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron-positron annihilation at LEP, Phys. Rev. Lett. 104 (2010) 072002 [arXiv:0910.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  66. T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].

    Article  ADS  Google Scholar 

  67. Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [INSPIRE].

    Article  ADS  Google Scholar 

  68. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s (mZ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].

    ADS  Google Scholar 

  69. R. Davison and B. Webber, Non-perturbative contribution to the thrust distribution in e + e annihilation, Eur. Phys. J. C 59 (2009) 13 [arXiv:0809.3326] [INSPIRE].

    Article  ADS  Google Scholar 

  70. JADE collaboration, S. Bethke, S. Kluth, C. Pahl and J. Schieck, Determination of the strong coupling α s from hadronic event shapes with O \((\alpha_s^3)\) and resummed QCD predictions using JADE data, Eur. Phys. J. C 64 (2009) 351 [arXiv:0810.1389] [INSPIRE].

    Article  ADS  Google Scholar 

  71. OPAL collaboration, G. Abbiendi et al., Determination of α s using OPAL hadronic event shapes at \(\sqrt {s} = {91} - {2}0{9}\) GeV and resummed NNLO calculations, Eur. Phys. J. C 71 (2011) 1733 [arXiv:1101.1470] [INSPIRE].

    Article  ADS  Google Scholar 

  72. T. Gehrmann, M. Jaquier and G. Luisoni, Hadronization effects in event shape moments, Eur. Phys. J. C 67 (2010) 57 [arXiv:0911.2422] [INSPIRE].

    Article  ADS  Google Scholar 

  73. W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].

    ADS  Google Scholar 

  74. W. Giele, D. Kosower and P. Skands, Higher-Order corrections to timelike jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].

    ADS  Google Scholar 

  75. P.F. Monni, T. Gehrmann and G. Luisoni, Two-loop soft corrections and resummation of the thrust distribution in the dijet region, JHEP 08 (2011) 010 [arXiv:1105.4560] [INSPIRE].

    Article  ADS  Google Scholar 

  76. S. Catani, L. Trentadue, G. Turnock and B. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  77. T. Gehrmann, G. Luisoni and H. Stenzel, Matching NLLA + NNLO for event shape distributions, Phys. Lett. B 664 (2008) 265 [arXiv:0803.0695] [INSPIRE].

    ADS  Google Scholar 

  78. A. Gehrmann-De Ridder and M. Ritzmann, NLO antenna subtraction with massive fermions, JHEP 07 (2009) 041 [arXiv:0904.3297] [INSPIRE].

    Article  ADS  Google Scholar 

  79. G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP 04 (2011) 063 [arXiv:1102.2443] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].

    Article  ADS  Google Scholar 

  81. E. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].

    Article  Google Scholar 

  82. A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].

    Article  ADS  Google Scholar 

  83. R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].

    Article  ADS  Google Scholar 

  84. T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  85. G. Heinrich, A numerical method for NNLO calculations, Nucl. Phys. Proc. Suppl. 116 (2003) 368 [hep-ph/0211144] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  86. C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].

    ADS  Google Scholar 

  87. T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [INSPIRE].

    Article  ADS  Google Scholar 

  88. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].

    Article  ADS  Google Scholar 

  89. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].

    Article  ADS  Google Scholar 

  90. C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the HWWlνlν signal at the LHC, JHEP 09(2007)018 [arXiv:0707.2373] [INSPIRE].

  91. K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O \((\alpha_s^2)\), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [INSPIRE].

    Article  ADS  Google Scholar 

  92. M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wlνlν and HZZ4l decay channels, JHEP 02(2008)043 [arXiv:0801.3232][INSPIRE].

    Article  ADS  Google Scholar 

  93. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  94. S. Catani, G. Ferrera and M. Grazzini, W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [INSPIRE].

    Article  ADS  Google Scholar 

  95. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  96. A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, Real-virtual corrections for gluon scattering at NNLO, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Francesco Monni.

Additional information

ArXiv EPrint: 1107.4037

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrmann, T., Monni, P.F. Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations. J. High Energ. Phys. 2011, 49 (2011). https://doi.org/10.1007/JHEP12(2011)049

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)049

Keywords

Navigation