Skip to main content
Log in

Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The antenna subtraction formalism allows to calculate QCD corrections to jet observables. Within this formalism, the subtraction terms are constructed using antenna functions describing all unresolved radiation between a pair of hard radiator partons. In this paper, we focus on the subtraction terms for double real radiation contributions to jet observables in hadron-hadron collisions evaluated at NNLO. An essential ingredient to these subtraction terms are the four-parton antenna functions with both radiators in the initial state. We outline the construction of the double real subtraction terms, classify all relevant antenna functions and describe their integration over the relevant antenna phase space. For the initial-initial antenna functions with two quark flavours, we derive the phase space master integrals and obtain the integrated antennae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  2. T.D. Lee and M. Nauenberg, Degenerate Systems And Mass Singularities, Phys. Rev. B 133 (1964) 1549 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].

    Article  ADS  Google Scholar 

  4. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [SPIRES].

    Article  ADS  Google Scholar 

  5. Z. Nagy and Z. Trócsányi, Calculation of QCD jet cross sections at next-to-leading order, Nucl. Phys. B 486 (1997) 189 [hep-ph/9610498] [SPIRES].

    Article  ADS  Google Scholar 

  6. S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [SPIRES].

    Article  ADS  Google Scholar 

  7. G. Somogyi and Z. Trócsányi, A new subtraction scheme for computing QCD jet cross sections at next-to-leading order accuracy, hep-ph/0609041 [SPIRES].

  8. R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].

    Article  ADS  Google Scholar 

  9. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [SPIRES].

    Article  ADS  Google Scholar 

  10. M.H. Seymour and C. Tevlin, TeVJet: A general framework for the calculation of jet observables in NLO QCD, arXiv:0803.2231 [SPIRES].

  11. K. Hasegawa, S. Moch and P. Uwer, Automating dipole subtraction, Nucl. Phys. Proc. Suppl. 183 (2008) 268 [arXiv:0807.3701] [SPIRES].

    Article  ADS  Google Scholar 

  12. K. Hasegawa, S. Moch and P. Uwer, AutoDipole — Automated generation of dipole subtraction terms -, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. R. Frederix, T. Gehrmann and N. Greiner, Automation of the Dipole Subtraction Method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [SPIRES].

    Article  ADS  Google Scholar 

  14. M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [SPIRES].

    Article  ADS  Google Scholar 

  15. C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].

    ADS  Google Scholar 

  16. W.T. Giele and G. Zanderighi, On the Numerical Evaluation of One-Loop Amplitudes: The Gluonic Case, JHEP 06 (2008) 038 [arXiv:0805.2152] [SPIRES].

    Article  ADS  Google Scholar 

  17. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].

    Article  ADS  Google Scholar 

  18. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  19. J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].

    ADS  Google Scholar 

  20. J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].

    ADS  Google Scholar 

  21. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna Subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [SPIRES].

    Article  ADS  Google Scholar 

  22. S. Weinzierl, Subtraction terms at NNLO, JHEP 03 (2003) 062 [hep-ph/0302180] [SPIRES].

    Article  ADS  Google Scholar 

  23. S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP 06 (2005) 010 [hep-ph/0411399] [SPIRES].

    Article  ADS  Google Scholar 

  24. G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226] [SPIRES].

    Article  ADS  Google Scholar 

  25. G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP 01 (2007) 070 [hep-ph/0609042] [SPIRES].

    Article  ADS  Google Scholar 

  26. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043] [SPIRES].

    Article  ADS  Google Scholar 

  27. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I, JHEP 08 (2008) 042 [arXiv:0807.0509] [SPIRES].

    Article  ADS  Google Scholar 

  28. U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections I, JHEP 09 (2008) 107 [arXiv:0807.0514] [SPIRES].

    Article  ADS  Google Scholar 

  29. G. Somogyi, Subtraction with hadronic initial states: an NNLO- compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [SPIRES].

    Article  ADS  Google Scholar 

  30. P. Bolzoni, S.-O. Moch, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections II, JHEP 08 (2009) 079 [arXiv:0905.4390] [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [SPIRES].

    ADS  Google Scholar 

  32. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [SPIRES].

    Article  ADS  Google Scholar 

  33. M. Grazzini, NNLO predictions for the Higgs boson signal in the HWWlνlν and HZZ → 4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [SPIRES].

    Article  ADS  Google Scholar 

  34. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [SPIRES].

    Article  ADS  Google Scholar 

  35. S. Catani, G. Ferrera and M. Grazzini, W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [SPIRES].

    Article  ADS  Google Scholar 

  36. T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Binoth and G. Heinrich, Numerical evaluation of multi-loop integrals by sector decomposition, Nucl. Phys. B 680 (2004) 375 [hep-ph/0305234] [SPIRES].

    Article  ADS  Google Scholar 

  38. G. Heinrich, Sector Decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [arXiv:0803.4177] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. G. Heinrich, A numerical method for NNLO calculations, Nucl. Phys. Proc. Suppl. 116 (2003) 368 [hep-ph/0211144] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  40. C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [SPIRES].

    ADS  Google Scholar 

  41. T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [SPIRES].

    Article  ADS  Google Scholar 

  42. G. Heinrich, The sector decomposition approach to real radiation at NNLO, Nucl. Phys. Proc. Suppl. 157 (2006) 43 [hep-ph/0601232] [SPIRES].

    Article  ADS  Google Scholar 

  43. C. Anastasiou, K. Melnikov and F. Petriello, Real radiation at NNLO: e+e− → 2 jets through O(α s 2), Phys. Rev. Lett. 93 (2004) 032002 [hep-ph/0402280] [SPIRES].

    Article  ADS  Google Scholar 

  44. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [SPIRES].

    Article  ADS  Google Scholar 

  45. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [SPIRES].

    Article  ADS  Google Scholar 

  46. K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O(α s 2), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [SPIRES].

    Article  ADS  Google Scholar 

  47. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Infrared structure of e + e 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [SPIRES].

    Article  ADS  Google Scholar 

  48. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Jet rates in electron-positron annihilation at O(α s 3) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [SPIRES].

    Article  ADS  Google Scholar 

  49. S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [SPIRES].

    Article  ADS  Google Scholar 

  50. S. Weinzierl, The infrared structure of e + e → 3 jets at NNLO reloaded, JHEP 07 (2009) 009 [arXiv:0904.1145] [SPIRES].

    Article  ADS  Google Scholar 

  51. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [SPIRES].

    Article  ADS  Google Scholar 

  52. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [SPIRES].

    Article  ADS  Google Scholar 

  53. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO moments of event shapes in e + e annihilation, JHEP 05 (2009) 106 [arXiv:0903.4658] [SPIRES].

    Article  ADS  Google Scholar 

  54. S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [SPIRES].

    Article  ADS  Google Scholar 

  55. S. Weinzierl, Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev. D 80 (2009) 094018 [arXiv:0909.5056] [SPIRES].

    ADS  Google Scholar 

  56. G. Dissertori et al., First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in e + e annihilations, JHEP 02 (2008) 040 [arXiv:0712.0327] [SPIRES].

    Article  ADS  Google Scholar 

  57. G. Dissertori et al., Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in e + e annihilations, JHEP 08 (2009) 036 [arXiv:0906.3436] [SPIRES].

    Article  ADS  Google Scholar 

  58. G. Dissertori et al., Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron–positron annihilation at LEP, Phys. Rev. Lett. 104 (2010) 072002 [arXiv:0910.4283] [SPIRES].

    Article  ADS  Google Scholar 

  59. JADE collaboration, S. Bethke, S. Kluth, C. Pahl and J. Schieck, Determination of the Strong Coupling α s from hadronic Event Shapes with O(alpha s 3) and resummed QCD predictions using JADE Data, Eur. Phys. J. C 64 (2009) 351 [arXiv:0810.1389] [SPIRES].

    Article  ADS  Google Scholar 

  60. T. Gehrmann, M. Jaquier and G. Luisoni, Hadronization effects in event shape moments, Eur. Phys. J. C 67 (2010) 57 [arXiv:0911.2422] [SPIRES].

    Article  ADS  Google Scholar 

  61. A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [SPIRES].

    Article  ADS  Google Scholar 

  62. A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [SPIRES].

    Article  ADS  Google Scholar 

  63. R. Boughezal, A. G.-D. Ridder and M. Ritzmann, NNLO antenna subtraction with two hadronic initial states, PoS(RADCOR2009)052 [arXiv:1001.2396] [SPIRES].

  64. E.W. Nigel Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [SPIRES].

    Article  Google Scholar 

  65. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Infrared Structure of e + e → 2 jets at NNLO, Nucl. Phys. B 691 (2004) 195 [hep-ph/0403057] [SPIRES].

    Article  ADS  Google Scholar 

  66. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, quark-gluon Antenna Functions from Neutralino Decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [SPIRES].

    ADS  Google Scholar 

  67. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-Gluon Antenna Functions from Higgs Boson Decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [SPIRES].

    ADS  Google Scholar 

  68. D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [SPIRES].

    Article  ADS  Google Scholar 

  69. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].

    Article  ADS  Google Scholar 

  70. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [SPIRES].

    ADS  Google Scholar 

  71. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [SPIRES].

    Article  ADS  Google Scholar 

  72. F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett. B 100 (1981) 65 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  73. K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [SPIRES].

    Article  ADS  Google Scholar 

  74. T. Gehrmann and E. Remiddi, Differential equations for two-loop four-point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  75. S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  76. A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [SPIRES].

    Article  ADS  Google Scholar 

  77. A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  78. A.V. Kotikov, Differential equations method: The Calculation of vertex type Feynman diagrams, Phys. Lett. B 259 (1991) 314 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  79. A.V. Kotikov, Differential equation method: The Calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  80. E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [SPIRES].

    ADS  Google Scholar 

  81. M. Caffo, H. Czyz, S. Laporta and E. Remiddi, Master equations for master amplitudes, Acta Phys. Polon. B 29 (1998) 2627 [hep-th/9807119] [SPIRES].

    Google Scholar 

  82. M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The master differential equations for the 2-loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [hep-th/9805118] [SPIRES].

    ADS  Google Scholar 

  83. T. Gehrmann and E. Remiddi, Two-Loop Master Integrals for γ* → 3 Jets: The planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [SPIRES].

    Article  ADS  Google Scholar 

  84. T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aude Gehrmann-De Ridder.

Additional information

ArXiv ePrint: 1011.6631

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boughezal, R., Gehrmann-De Ridder, A. & Ritzmann, M. Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours. J. High Energ. Phys. 2011, 98 (2011). https://doi.org/10.1007/JHEP02(2011)098

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)098

Keywords

Navigation