Skip to main content
Log in

Composite Higgs sketch

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The couplings of a composite Higgs to the standard model fields can deviate substantially from the standard model values. In this case perturbative unitarity might break down before the scale of compositeness, Λ, is reached, which would suggest that additional composites should lie well below Λ. In this paper we account for the presence of an additional spin 1 custodial triplet ρ ±,0. We examine the implications of requiring perturbative unitarity up to the scale Λ and find that one has to be close to saturating certain unitarity sum rules involving the Higgs and ρ couplings. Given these restrictions on the parameter space we investigate the main phenomenological consequences of the ρ’s. We find that they can substantially enhance the hγγ rate at the LHC even with a reduced Higgs coupling to gauge bosons. The main existing LHC bounds arise from di-boson searches, especially in the experimentally clean channel ρ ±W ± Z → 3l + ν. We find that a large range of interesting parameter space with 700 GeV ≾ m ρ ≾ 2 TeV is currently experimentally viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the Standard Model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb−1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  3. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    ADS  Google Scholar 

  4. C. Llewellyn Smith, High-energy behavior and gauge symmetry, Phys. Lett. B 46 (1973) 233 [INSPIRE].

    ADS  Google Scholar 

  5. D. Dicus and V. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev. D 7 (1973) 3111 [INSPIRE].

    ADS  Google Scholar 

  6. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett. 30 (1973) 1268 [Erratum ibid. 31 (1973) 572] [INSPIRE].

    Google Scholar 

  7. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].

  8. B.W. Lee, C. Quigg and H. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].

    Article  ADS  Google Scholar 

  9. B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  10. M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  11. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Chang and J.G. Wacker, Little Higgs and custodial SU(2), Phys. Rev. D 69 (2004) 035002 [hep-ph/0303001] [INSPIRE].

    ADS  Google Scholar 

  14. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  15. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  16. P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin breaking in technicolor models, Nucl. Phys. B 173 (1980) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  18. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    ADS  Google Scholar 

  19. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02 (2007) 036 [hep-ph/0611358] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Galloway, B. McElrath, J. McRaven and J. Terning, Gaugephobic Higgs signals at the LHC, JHEP 11 (2009) 031 [arXiv:0908.0532] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].

    Article  ADS  Google Scholar 

  26. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

    Article  ADS  Google Scholar 

  27. N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. C.T. Hill, S. Pokorski and J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].

    ADS  Google Scholar 

  29. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Farina, C. Grojean and E. Salvioni, (Dys)Zphilia or a custodial breaking Higgs at the LHC, JHEP 07 (2012) 012 [arXiv:1205.0011] [INSPIRE].

    Article  ADS  Google Scholar 

  34. W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard Model couplings and collider signatures of a light scalar, Phys. Rev. D 79 (2009) 035017 [arXiv:0803.2040] [INSPIRE].

    ADS  Google Scholar 

  36. C. Csáki, M. Graesser, L. Randall and J. Terning, Cosmology of brane models with radion stabilization, Phys. Rev. D 62 (2000) 045015 [hep-ph/9911406] [INSPIRE].

    ADS  Google Scholar 

  37. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].

    ADS  Google Scholar 

  38. C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].

    ADS  Google Scholar 

  39. A. Orgogozo and S. Rychkov, Exploring T and S parameters in vector meson dominance models of strong electroweak symmetry breaking, JHEP 03 (2012) 046 [arXiv:1111.3534] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Bando, T. Kugo and K. Yamawaki, Nonlinear realization and hidden local symmetries, Phys. Rept. 164 (1988) 217 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. H. Georgi, Vector realization of chiral symmetry, Nucl. Phys. B 331 (1990) 311 [INSPIRE].

    Article  ADS  Google Scholar 

  43. R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Effective weak interaction theory with possible new vector resonance from a strong Higgs sector, Phys. Lett. B 155 (1985) 95 [INSPIRE].

    ADS  Google Scholar 

  44. R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Physical implications of possible J = 1 bound states from strong Higgs, Nucl. Phys. B 282 (1987) 235 [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Son, C. Spethmann and B. Tweedie, Diboson-jets and the search for resonant Zh production, JHEP 08 (2012) 160 [arXiv:1204.0525] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Katz, M. Son and B. Tweedie, Jet substructure and the search for neutral spin-one resonances in electroweak boson channels, JHEP 03 (2011) 011 [arXiv:1010.5253] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Pomarol and J. Serra, Top quark compositeness: feasibility and implications, Phys. Rev. D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].

    ADS  Google Scholar 

  48. M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Cacciapaglia et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [INSPIRE].

    Article  ADS  Google Scholar 

  50. O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].

    ADS  Google Scholar 

  51. A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].

    ADS  Google Scholar 

  52. M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs low-energy theorem (and its corrections) in composite models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].

    Article  ADS  Google Scholar 

  53. Z. Chacko and R.K. Mishra, Effective theory of a light dilaton, arXiv:1209.3022 [INSPIRE].

  54. Z. Chacko, R. Franceschini and R.K. Mishra, Resonance at 125 GeV: Higgs or dilaton/radion?, arXiv:1209.3259 [INSPIRE].

  55. B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A Higgslike dilaton, arXiv:1209.3299 [INSPIRE].

  56. J. Ellis and T. You, Global analysis of experimental constraints on a possible Higgs-like particle with mass ∼ 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].

    ADS  Google Scholar 

  58. C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgs-less electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [INSPIRE].

    Article  ADS  Google Scholar 

  59. A. Falkowski, C. Grojean, A. Kaminska, S. Pokorski and A. Weiler, If no Higgs then what?, JHEP 11 (2011) 028 [arXiv:1108.1183] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Carcamo Hernandez and R. Torre, Acompositescalar-vector system at the LHC, Nucl. Phys. B 841 (2010) 188 [arXiv:1005.3809] [INSPIRE].

    Article  ADS  Google Scholar 

  61. R. Foadi, M. Jarvinen and F. Sannino, Unitarity in technicolor, Phys. Rev. D 79 (2009) 035010 [arXiv:0811.3719] [INSPIRE].

    ADS  Google Scholar 

  62. M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Papucci, NDA and perturbativity in Higgs-less models, hep-ph/0408058 [INSPIRE].

  64. R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy vectors in Higgs-less models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806.1624] [INSPIRE].

    ADS  Google Scholar 

  65. Z. Komargodski, Vector mesons and an interpretation of Seiberg duality, JHEP 02 (2011) 019 [arXiv:1010.4105] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  67. B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B 247 (1990) 88 [INSPIRE].

    ADS  Google Scholar 

  68. M. Golden and L. Randall, Radiative corrections to electroweak parameters in technicolor theories, Nucl. Phys. B 361 (1991) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  69. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    Article  ADS  Google Scholar 

  70. G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].

    ADS  Google Scholar 

  71. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

    ADS  Google Scholar 

  72. J. Erler and P. Langacker, Electroweak model and constraints on new physics, in Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].

  73. R. Torre, Signals of composite particles at the LHC, arXiv:1110.3906 [INSPIRE].

  74. G. Cacciapaglia, C. Csáki, C. Grojean and J. Terning, Curing the ills of Higgs-less models: the S parameter and unitarity, Phys. Rev. D 71 (2005) 035015 [hep-ph/0409126] [INSPIRE].

    ADS  Google Scholar 

  75. G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, A new custodian for a realistic Higgs-less model, Phys. Rev. D 75 (2007) 015003 [hep-ph/0607146] [INSPIRE].

    ADS  Google Scholar 

  76. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  78. Search for a Wor techni-rho decaying into W Z in pp collisions at \( \sqrt{s}=7 \) TeV webpage, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11041Winter2012.

  79. A. Birkedal, K.T. Matchev and M. Perelstein, Phenomenology of Higgs-less models at the LHC and the ILC, eConf C 050318 (2005) 0314 [hep-ph/0508185] [INSPIRE].

  80. A. Belyaev et al., Technicolor walks at the LHC, Phys. Rev. D 79 (2009) 035006 [arXiv:0809.0793] [INSPIRE].

    ADS  Google Scholar 

  81. O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Present bounds on new neutral vector resonances from electroweak gauge boson pair production at the LHC, Phys. Rev. D 85 (2012) 055019 [arXiv:1112.0316] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brando Bellazzini.

Additional information

ArXiv ePrint: 1205.4032

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellazzini, B., Csáki, C., Hubisz, J. et al. Composite Higgs sketch. J. High Energ. Phys. 2012, 3 (2012). https://doi.org/10.1007/JHEP11(2012)003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)003

Keywords

Navigation