Skip to main content
Log in

On the effect of resonances in composite Higgs phenomenology

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a generic composite Higgs model based on the coset SO(5)/SO(4) and study its phenomenology beyond the leading low-energy effective lagrangian approximation. Our basic goal is to introduce in a controllable and simple way the lowest-lying, possibly narrow, resonances that may exist is such models. We do so by proposing a criterion that we call partial UV completion. We characterize the simplest cases, corresponding respectively to a scalar in either singlet or tensor representation of SO(4) and to vectors in the adjoint of SO(4). We study the impact of these resonances on the signals associated to high-energy vector boson scattering, pointing out for each resonance the characteristic patterns of depletion and enhancement with respect to the leading-order chiral lagrangian. En route we derive the O(p 4) general chiral lagrangian and discuss its peculiar accidental and approximate symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [ INSPIRE].

    ADS  Google Scholar 

  2. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [ INSPIRE].

    Article  ADS  Google Scholar 

  3. D. Alves et al., Simplified models for LHC new physics searches, arXiv:1105.2838 [ INSPIRE].

  4. J.F. Donoghue and C. Ramirez, Symmetry breaking schemes and WW scattering, Phys. Lett. B 234 (1990) 361 [ INSPIRE].

    ADS  Google Scholar 

  5. J.F. Donoghue, C. Ramirez and G. Valencia, The spectrum of QCD and chiral lagrangians of the strong and weak interactions, Phys. Rev. D 39 (1989) 1947 [ INSPIRE].

    ADS  Google Scholar 

  6. J. Bagger et al., The strongly interacting WW system: gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [ INSPIRE].

    ADS  Google Scholar 

  7. M.S. Chanowitz and W. Kilgore, Complementarity of resonant and nonresonant strong WW scattering at the LHC, Phys. Lett. B 322 (1994) 147 [hep-ph/9311336] [ INSPIRE].

    ADS  Google Scholar 

  8. M.S. Chanowitz and W.B. Kilgore, W + Z and W + γ backgrounds to strong W + W + scattering at the LHC, Phys. Lett. B 347 (1995) 387 [hep-ph/9412275] [ INSPIRE].

    ADS  Google Scholar 

  9. M.S. Chanowitz, Strong WW scattering at the end of the 90’s: theory and experimental prospects, hep-ph/9812215 [ INSPIRE].

  10. R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy vectors in Higgs-less models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806. 1624] [ INSPIRE].

    ADS  Google Scholar 

  11. R. Barbieri, A. Carcamo Hernandez, G. Corcella, R. Torre and E. Trincherini, Composite vectors at the Large Hadron Collider, JHEP 03 (2010) 068 [arXiv:0911.1942] [ INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Carcamo Hernandez and R. Torre, A ’composite’ scalar-vector system at the LHC, Nucl. Phys. B 841 (2010) 188 [arXiv:1005. 3809] [ INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Falkowski, C. Grojean, A. Kaminska, S. Pokorski and A. Weiler, If no Higgs then what?, arXiv:1108.1183 [ INSPIRE].

  14. G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [ INSPIRE].

    Article  ADS  Google Scholar 

  15. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological lagrangians. 1., Phys. Rev. 177 (1969) 2239 [ INSPIRE].

    Article  ADS  Google Scholar 

  16. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological lagrangians. 2., Phys. Rev. 177 (1969) 2247 [ INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [ INSPIRE].

    ADS  Google Scholar 

  18. J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [ INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [ INSPIRE].

    ADS  Google Scholar 

  20. Y. Hosotani, P. Ko and M. Tanaka, Stable Higgs bosons as cold dark matter, Phys. Lett. B 680 (2009) 179 [arXiv:0908. 0212] [ INSPIRE].

    ADS  Google Scholar 

  21. Y. Hosotani, M. Tanaka and N. Uekusa, H parity and the stable Higgs boson in the SO(5) × U(1) gauge-Higgs unification, Phys. Rev. D 82 (2010) 115024 [arXiv:1010.6135] [ INSPIRE].

    ADS  Google Scholar 

  22. Y. Hosotani, M. Tanaka and N. Uekusa, Collider signatures of the SO(5) × U(1) gauge-Higgs unification, arXiv:1103.6076 [ INSPIRE].

  23. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [ INSPIRE].

    ADS  Google Scholar 

  24. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [ INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706. 0432] [ INSPIRE].

    ADS  Google Scholar 

  26. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [ INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [ INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Pham and T.N. Truong, Evaluation of the derivative quartic terms of the meson chiral lagrangian from forward dispersion relation, Phys. Rev. D 31 (1985) 3027 [ INSPIRE].

    ADS  Google Scholar 

  31. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying models of new physics via WW scattering, Phys. Rev. Lett. 98 (2007) 041601 [hep-ph/0604255] [ INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral lagrangians for massive spin 1 fields, Phys. Lett. B 223 (1989) 425 [ INSPIRE].

    ADS  Google Scholar 

  34. M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [ INSPIRE].

    Article  ADS  Google Scholar 

  35. R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Effective weak interaction theory with possible new vector resonance from a strong Higgs sector, Phys. Lett. B 155 (1985) 95 [ INSPIRE].

    ADS  Google Scholar 

  36. R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Physical implications of possible J =1 bound states from strong Higgs, Nucl. Phys. B 282 (1987) 235 [ INSPIRE].

    Article  ADS  Google Scholar 

  37. H. Georgi, Vector realization of chiral symmetry, Nucl. Phys. B 331 (1990) 311 [ INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [ INSPIRE].

    Article  ADS  Google Scholar 

  39. R. Cahn and S. Dawson, Production of very massive Higgs bosons, Phys. Lett. B 136 (1984) 196 [Erratum ibid. B 138 (1984) 464] [ INSPIRE].

    Google Scholar 

  40. S. Dawson, The effective W approximation, Nucl. Phys. B 249 (1985) 42 [ INSPIRE].

    Article  ADS  Google Scholar 

  41. M.S. Chanowitz and M.K. Gaillard, Multiple production of W and Z as a signal of new strong interactions, Phys. Lett. B 142 (1984) 85 [ INSPIRE].

    ADS  Google Scholar 

  42. G.L. Kane, W. Repko and W. Rolnick, The effective W ± ,Z 0 approximation for high-energy collisions, Phys. Lett. B 148 (1984) 367 [ INSPIRE].

    ADS  Google Scholar 

  43. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [ INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [ INSPIRE].

    Article  ADS  Google Scholar 

  45. F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [ INSPIRE].

    Article  ADS  Google Scholar 

  46. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [ INSPIRE].

    Article  ADS  Google Scholar 

  47. K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [ INSPIRE].

    Article  ADS  Google Scholar 

  48. R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi and A. Thamm, in preparation.

  49. S. Rychkov, Heavy vectors in Higgs-less models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806.1624] [ INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duccio Pappadopulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contino, R., Pappadopulo, D., Marzocca, D. et al. On the effect of resonances in composite Higgs phenomenology. J. High Energ. Phys. 2011, 81 (2011). https://doi.org/10.1007/JHEP10(2011)081

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)081

Keywords

Navigation