Skip to main content
Log in

Holographic Wilsonian flows and emergent fermions in extremal charged black holes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study holographic Wilsonian RG in a general class of asymptotically AdS backgrounds with a U(1) gauge field. We consider free charged Dirac fermions in such a background, and integrate them up to an intermediate radial distance, yielding an equivalent low energy dual field theory. The new ingredient, compared to scalars, involves a ‘generalized’ basis of coherent states which labels a particular half of the fermion components as coordinates or momenta, depending on the choice of quantization (standard or alternative). We apply this technology to explicitly compute RG flows of charged fermionic operators and their composites (double trace operators) in field theories dual to (a) pure AdS and (b) extremal charged black hole geometries. The flow diagrams and fixed points are determined explicitly. In the case of the extremal black hole, the RG flows connect two fixed points at the UV AdS boundary to two fixed points at the IR AdS2 region. The double trace flow is shown, both numerically and analytically, to develop a pole singularity in the AdS2 region at low frequency and near the Fermi momentum, which can be traced to the appearance of massless fermion modes on the low energy cut-off surface. The low energy field theory action we derive exactly agrees with the semi-holographic action proposed by Faulkner and Polchinski in [21]. In terms of field theory, the holographic version of Wilsonian RG leads to a quantum theory with random sources. In the extremal black hole background the random sources become ‘light’ in the AdS2 region near the Fermi surface and emerge as new dynamical degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

    Article  ADS  Google Scholar 

  2. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

    ADS  Google Scholar 

  3. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian Approach to Fluid/Gravity Duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [arXiv:1009.3094] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D.K. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem : Fluid/Gravity on cut-off surfaces, arXiv:1106.2577 [INSPIRE].

  6. S.-J. Sin and Y. Zhou, Holographic Wilsonian RG Flow and Sliding Membrane Paradigm, JHEP 05 (2011) 030 [arXiv:1102.4477] [INSPIRE].

    Article  ADS  Google Scholar 

  7. D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].

  8. J. Fan, Effective AdS/renormalized CFT, JHEP 09 (2011) 136 [arXiv:1105.0678] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D. Radicevic, Connecting the Holographic and Wilsonian Renormalization Groups, arXiv:1105.5825 [INSPIRE].

  10. N. Evans, K.-Y. Kim and M. Magou, Holographic Wilsonian Renormalization and Chiral Phase Transitions, arXiv:1107.5318 [INSPIRE].

  11. E.T. Akhmedov, A Remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. E. Alvarez and C. Gomez, Geometric holography, the renormalization group and the c theorem, Nucl. Phys. B 541 (1999) 441 [hep-th/9807226] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. V. Balasubramanian and P. Kraus, Space-time and the holographic renormalization group, Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MATH  MathSciNet  Google Scholar 

  15. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

    Article  Google Scholar 

  16. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002)159 [hep-th/0112119] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. E.T. Akhmedov, Notes on multitrace operators and holographic renormalization group, hep-th/0202055 [INSPIRE].

  18. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Elander, H. Isono and G. Mandal, in preparation.

  20. J.N. Laia and D. Tong, Flowing Between Fermionic Fixed Points, arXiv:1108.2216 [INSPIRE].

  21. T. Faulkner and J. Polchinski, Semi-Holographic Fermi Liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].

    Article  ADS  Google Scholar 

  22. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  23. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2 , Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  24. R. Floreanini and R. Jackiw, Functional representation for fermionic quantum fields, Phys. Rev. D 37 (1988) 2206[INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. P. Mansfield and D. Nolland, The Schrödinger representation for fermions and a local expansion of the Schwinger model, Int. J. Mod. Phys. A 15 (2000) 429 [hep-th/9907159] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 hep-th/9905104] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality Lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].

    ADS  Google Scholar 

  28. S. Sachdev, The landscape of the Hubbard model, arXiv:1012.0299 [INSPIRE].

  29. T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, JHEP 04 (2011) 051 [arXiv:1008.1581] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. N. Iqbal, H. Liu and M. Mezei, Quantum phase transitions in semi-local quantum liquids, arXiv:1108.0425 [INSPIRE].

  31. D.J. Gross and A. Neveu, Dynamical Symmetry Breaking in Asymptotically Free Field Theories, Phys. Rev. D 10 (1974) 3235 [INSPIRE].

    ADS  Google Scholar 

  32. A. Dhar and S.R. Wadia, The Nambu-Jona-Lasinio Model: An Effective Lagrangian for Quantum Chromodynamics at Intermediate Length Scales, Phys. Rev. Lett. 52 (1984) 959 [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Dhar, R. Shankar and S.R. Wadia, Nambu-Jona-Lasinio Type Effective Lagrangian. 2. Anomalies and Nonlinear Lagrangian of Low-Energy, Large-N QCD, Phys. Rev. D 31 (1985) 3256 [INSPIRE].

    ADS  Google Scholar 

  34. G. Mandal, Holographic RG: Flow diagrams, Fermions and Effective Lagrangians, talk at Subrahmanyan Chandrasekhar Lecture and Discussion Meeting, Tata Institute of Fundamental Research, 21–23 March 2011.

  35. G. Mandal, Holographic RG: Flow diagrams, Fermions and Effective Lagrangians, talk at School and Workshop on Applied String Theory, Isfahan Iran, 3–7 May 2011.

  36. H.Isono, Holographic Wilsonian RG - flow diagrams, fermions, talk at Sixth Crete Regional Meeting in String Theory, Milos Greece, 19–26 June 2011.

  37. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MATH  MathSciNet  Google Scholar 

  39. L. Susskind and E. Witten, The Holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].

  40. A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  42. I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. L. Vecchi, Multitrace deformations, Gamow states and Stability of AdS/CFT, JHEP 04 (2011) 056 [arXiv:1005.4921] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Allais, Double-trace deformations, holography and the c-conjecture, JHEP 11 (2010) 040 [arXiv:1007.2047] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431 (1998) 63 [hep-th/9803251] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  47. G. Arutyunov and S. Frolov, On the origin of supergravity boundary terms in the AdS/CFT correspondence, Nucl. Phys. B 544 (1999) 576 [hep-th/9806216] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Henneaux, Boundary terms in the AdS/CFT correspondence for spinor fields, hep-th/9902137 [INSPIRE].

  49. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. A. Dhar, G. Mandal and S.R. Wadia, Asymptotically free four-fermi theory in 4 dimensions at the z = 3 Lifshitz-like fixed point, Phys. Rev. D 80 (2009) 105018 [arXiv:0905.2928] [INSPIRE].

    ADS  Google Scholar 

  51. A. Dhar, G. Mandal and P. Nag, Renormalization group flows in a Lifshitz-like four Fermi model, Phys. Rev. D 81 (2010) 085005 [arXiv:0911.5316] [INSPIRE].

    ADS  Google Scholar 

  52. J. Gauntlett, J. Sonner and D. Waldram, Spectral function of the supersymmetry current (II), arXiv:1108.1205 [INSPIRE].

  53. T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Holographic non-Fermi liquid fixed points, arXiv:1101.0597 [INSPIRE].

  54. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  55. S. Jain, Universal thermal and electrical conductivity from holography, JHEP 11 (2010) 092 [arXiv:1008.2944] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S.-S. Lee, Holographic description of quantum field theory, Nucl. Phys. B 832 (2010) 567 [arXiv:0912.5223] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S.-S. Lee, Holographic description of large-N gauge theory, Nucl. Phys. B 851 (2011) 143 [arXiv:1011.1474] [INSPIRE].

    Article  ADS  Google Scholar 

  58. G.A. Baker, Jr. and J.W. Essam, Effects of Lattice Compressibility on Critical Behavior, Phys. Rev. Lett. 24 (1970) 447.

    Article  ADS  Google Scholar 

  59. K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S.P. Trivedi and A. Westphal, Holography of Dyonic Dilaton Black Branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].

    ADS  Google Scholar 

  61. C. Eling and Y. Oz, Holographic Screens and Transport Coefficients in the Fluid/Gravity Correspondence, Phys. Rev. Lett. 107 (2011) 201602 [arXiv:1107.2134] [INSPIRE].

    Article  ADS  Google Scholar 

  62. I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Elander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elander, D., Isono, H. & Mandal, G. Holographic Wilsonian flows and emergent fermions in extremal charged black holes. J. High Energ. Phys. 2011, 155 (2011). https://doi.org/10.1007/JHEP11(2011)155

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)155

Keywords

Navigation