Skip to main content
Log in

Effective AdS/renormalized CFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

For an effective AdS theory, we present a simple prescription to compute the renormalization of its dual boundary field theory at \( \mathcal{O}\left( {{{1} \left/ {{{N^2}}} \right.}} \right) \). In particular, we define anomalous dimension holographically as the dependence of the wave-function renormalization factor on the radial cutoff in the Poincare patch of AdS. With this definition, the anomalous dimensions of both single- and double-trace operators are calculated. Three different dualities are considered with the field theory being CFT, CFT with a double-trace deformation and spontaneously broken CFT. For the second dual pair, we compute scaling corrections at the UV and IR fixed points of the RG flow triggered by the double-trace deformation. For the last case, we discuss whether our prescription is sensitive to the AdS interior or equivalently, the IR physics of the dual field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a Holographic Model of Hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [SPIRES].

    Article  ADS  Google Scholar 

  7. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [SPIRES].

    ADS  Google Scholar 

  8. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  9. C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  10. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [SPIRES].

    Google Scholar 

  11. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  12. L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [SPIRES].

  13. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [SPIRES].

    ADS  Google Scholar 

  15. R.B. Mann, Entropy of rotating Misner string spacetimes, Phys. Rev. D 61 (2000) 084013 [hep-th/9904148] [SPIRES].

    ADS  Google Scholar 

  16. P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat spacetimes, Nucl. Phys. B 563 (1999) 259 [hep-th/9906127] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  18. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  19. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic Renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  21. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  22. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [SPIRES].

    Article  Google Scholar 

  23. J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  24. A. Lewandowski, M.J. May and R. Sundrum, Running with the radius in RS1, Phys. Rev. D 67 (2003) 024036 [hep-th/0209050] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  25. A. Lewandowski, The Wilsonian renormalization group in Randall-Sundrum. I, Phys. Rev. D 71 (2005) 024006 [hep-th/0409192] [SPIRES].

    ADS  Google Scholar 

  26. L. Vecchi, Multitrace deformations, Gamow states and Stability of AdS/CFT, JHEP 04 (2011) 056 [arXiv:1005.4921] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  27. I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [SPIRES].

    Article  ADS  Google Scholar 

  28. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [SPIRES].

    ADS  Google Scholar 

  29. H. Liu, Scattering in anti-de Sitter space and operator product expansion, Phys. Rev. D 60 (1999) 106005 [hep-th/9811152] [SPIRES].

    ADS  Google Scholar 

  30. E. D’Hoker and D.Z. Freedman, General scalar exchange in AdS(d + 1), Nucl. Phys. B 550 (1999) 261 [hep-th/9811257] [SPIRES].

    Article  MathSciNet  Google Scholar 

  31. E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete 4-point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [SPIRES].

    Article  MathSciNet  Google Scholar 

  32. E. D’Hoker, S.D. Mathur, A. Matusis and L. Rastelli, The operator product expansion of N = 4 SYM and the 4-point functions of supergravity, Nucl. Phys. B 589 (2000) 38 [hep-th/9911222] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: Conformal partial waves and finite N four-point functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  34. L. Cornalba, M.S. Costa and J. Penedones, EikonalApproximation in AdS/CFT:Resumming the Gravitational Loop Expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective Conformal Theory and the Flat-Space Limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [SPIRES].

    Article  ADS  Google Scholar 

  36. P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  37. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].

    Article  Google Scholar 

  38. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  39. M.J. Strassler, Non-supersymmetric theories with light scalar fields and large hierarchies, hep-th/0309122 [SPIRES].

  40. D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality Lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [SPIRES].

    ADS  Google Scholar 

  41. R. Sundrum, SUSY Splits, But Then Returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  42. D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d + 1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  43. W. Mueck and K.S. Viswanathan, Conformal field theory correlators from classical scalar field theory on AdS(d + 1), Phys. Rev. D 58 (1998) 041901 [hep-th/9804035] [SPIRES].

    ADS  Google Scholar 

  44. G. Chalmers and K. Schalm, Holographic normal ordering and multiparticle states in the AdS/CFT correspondence, Phys. Rev. D 61 (2000) 046001 [hep-th/9901144] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  45. A.L. Fitzpatrick and D. Shih, Anomalous Dimensions of Non-Chiral Operators from AdS/CFT, arXiv:1104.5013 [SPIRES].

  46. A. Fitzpatrick. private communication.

  47. E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].

  48. T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. S.S. Gubser and I. Mitra, Double-trace operators and one-loop vacuum energy in AdS/CFT, Phys. Rev. D 67 (2003) 064018 [hep-th/0210093] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  50. S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double-trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  51. J. Polchinski and E. Silverstein, Dual Purpose Landscaping Tools: Small Extra Dimensions in AdS/CFT, arXiv:0908.0756 [SPIRES].

  52. M. Reece and L.-T. Wang, Randall-Sundrum and Strings, JHEP 07 (2010) 040 [arXiv:1003.5669] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  53. J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B 231 (1984) 269 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiJi Fan.

Additional information

ArXiv ePrint: 1105.0678

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J. Effective AdS/renormalized CFT. J. High Energ. Phys. 2011, 136 (2011). https://doi.org/10.1007/JHEP09(2011)136

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)136

Keywords

Navigation