Skip to main content
Log in

How robust is a thermal photon interpretation of the ALICE low-p T data?

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a systematic theoretical analysis of the ALICE measurement of low-p T direct-photon production in central lead-lead collisions at the LHC with a centre-of-mass-energy of \( \sqrt{{{s_{NN }}}}=2.76 \) TeV. Using NLO QCD, we compute the relative contributions to prompt-photon production from different initial and final states and the theoretical uncertainties coming from independent variations of the renormalisation and factorisation scales, the nuclear parton densities and the fragmentation functions. Based on different fits to the unsubtracted and prompt-photon subtracted ALICE data, we consistently find T = 304 ± 58MeV and 309 ± 64MeV for the effective temperature of the quark-gluon plasma (or hot medium) at p T ∈ [0.8; 2.2] GeV and p T ∈ [1.5; 3.5] GeV as well as a power-law (\( p_T^{-4 } \)) behavior for p T > 4 GeV as predicted by QCD hard scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALICE collaboration, M. Wilde, Measurement of direct photons in pp and Pb-Pb collisions with ALICE, Nucl. Phys. A 904-905 (2013) 573c [arXiv:1210.5958] [INSPIRE].

    Article  ADS  Google Scholar 

  2. PHENIX collaboration, A. Adare et al., Enhanced production of direct photons in Au+Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV and implications for the initial temperature, Phys. Rev. Lett. 104 (2010) 132301 [arXiv:0804.4168] [INSPIRE].

    Article  ADS  Google Scholar 

  3. D.G. d’Enterria and D. Peressounko, Probing the QCD equation of state with thermal photons in nucleus-nucleus collisions at RHIC, Eur. Phys. J. C 46 (2006) 451 [nucl-th/0503054] [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Chatterjee, H. Holopainen, T. Renk and K.J. Eskola, Enhancement of thermal photon production in event-by-event hydrodynamics, Phys. Rev. C 83 (2011) 054908 [arXiv:1102.4706] [INSPIRE].

    ADS  Google Scholar 

  5. R. Chatterjee, H. Holopainen, I. Helenius, T. Renk and K.J. Eskola, Elliptic flow of thermal photons from event-by-event hydrodynamic model, Phys. Rev. C 88 (2013) 034901 [arXiv:1305.6443] [INSPIRE].

    ADS  Google Scholar 

  6. C. Shen, U.W. Heinz, J.-F. Paquet and C. Gale, Thermal photons as a quark-gluon plasma thermometer revisited, arXiv:1308.2440 [INSPIRE].

  7. ATLAS collaboration, Measurement of high-p T isolated prompt photons in lead-lead collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-051, CERN, Geneva Switzerland (2012).

  8. CMS collaboration, Measurement of isolated photon production in pp and Pb-Pb collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV, Phys. Lett. B 710 (2012) 256 [arXiv:1201.3093] [INSPIRE].

    ADS  Google Scholar 

  9. ATLAS collaboration, P. Steinberg, Photon and Z production, and γ/Z-jet correlations in lead-lead collisions at the LHC with ATLAS, Nucl. Phys. A 904-905 (2013) 233c [INSPIRE].

    Article  ADS  Google Scholar 

  10. CMS collaboration, R. Granier de Cassagnac, Photon and electroweak boson production in Pb-Pb collisions, Nucl. Phys. A 904-905 (2013) 241c [INSPIRE].

    Article  ADS  Google Scholar 

  11. P. Aurenche, M. Fontannaz, J.-P. Guillet, E. Pilon and M. Werlen, A new critical study of photon production in hadronic collisions, Phys. Rev. D 73 (2006) 094007 [hep-ph/0602133] [INSPIRE].

    ADS  Google Scholar 

  12. M. Klasen, Theory of hard photoproduction, Rev. Mod. Phys. 74 (2002) 1221 [hep-ph/0206169] [INSPIRE].

    Article  ADS  Google Scholar 

  13. ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross-section in pp collisions at \( \sqrt{s}=7 \) TeV using 35 pb−1 of ATLAS data, Phys. Lett. B 706 (2011) 150 [arXiv:1108.0253] [INSPIRE].

    ADS  Google Scholar 

  14. ATLAS collaboration, Inclusive cross sections of isolated prompt photons in pp collisions at \( \sqrt{s}=7 \) TeV measured with the ATLAS detector using 4.7fb−1, ATLAS-CONF-2013-022, CERN, Geneva Switzerland (2013).

  15. CMS collaboration, Measurement of the isolated prompt photon production cross section in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 106 (2011) 082001 [arXiv:1012.0799] [INSPIRE].

    Article  Google Scholar 

  16. CMS collaboration, Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV, Phys. Rev. D 84 (2011) 052011 [arXiv:1108.2044] [INSPIRE].

    ADS  Google Scholar 

  17. P. Khandai, P. Shukla and V. Singh, Meson spectra and m T scaling in p + p, d + Au and Au + Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, Phys. Rev. C 84 (2011) 054904 [arXiv:1110.3929] [INSPIRE].

    ADS  Google Scholar 

  18. M. Klasen and G. Kramer, Large transverse momentum jet production and DIS distributions of the proton, Phys. Lett. B 386 (1996) 384 [hep-ph/9605210] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, JHEP 10 (2003) 046 [hep-ph/0303013] [INSPIRE].

    Article  ADS  Google Scholar 

  20. N. Hammon, A. Dumitru, H. Stoecker and W. Greiner, Nuclear shadowing effects on prompt photons at RHIC and CERN LHC, Phys. Rev. C 57 (1998) 3292 [hep-ph/9801292] [INSPIRE].

    ADS  Google Scholar 

  21. A. Dumitru, L. Frankfurt, L. Gerland, H. Stoecker and M. Strikman, Nuclear broadening effects on hard prompt photons at relativistic energies, Phys. Rev. C 64 (2001) 054909 [hep-ph/0103203] [INSPIRE].

    ADS  Google Scholar 

  22. A. Adare et al., Direct photon production in d + Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, arXiv:1208.1234 [INSPIRE].

  23. ALICE collaboration, Transverse momentum distribution and nuclear modification factor of charged particles in p-Pb collisions at \( \sqrt{{{s_{NN }}}}=5.02 \) TeV, Phys. Rev. Lett. 110 (2013) 082302 [arXiv:1210.4520] [INSPIRE].

    Article  ADS  Google Scholar 

  24. K. Eskola, H. Paukkunen and C. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Hirai, S. Kumano and T.-H. Nagai, Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order, Phys. Rev. C 76 (2007) 065207 [arXiv:0709.3038] [INSPIRE].

    ADS  Google Scholar 

  26. D. de Florian, R. Sassot, P. Zurita and M. Stratmann, Global analysis of nuclear parton distributions, Phys. Rev. D 85 (2012) 074028 [arXiv:1112.6324] [INSPIRE].

    ADS  Google Scholar 

  27. I. Schienbein et al., PDF nuclear corrections for charged and neutral current processes, Phys. Rev. D 80 (2009) 094004 [arXiv:0907.2357] [INSPIRE].

    ADS  Google Scholar 

  28. L. Bourhis, M. Fontannaz and J. Guillet, Quarks and gluon fragmentation functions into photons, Eur. Phys. J. C 2 (1998) 529 [hep-ph/9704447] [INSPIRE].

    ADS  Google Scholar 

  29. E.L. Berger, L.E. Gordon and M. Klasen, Massive lepton pairs as a prompt photon surrogate, Phys. Rev. D 58 (1998) 074012 [hep-ph/9803387] [INSPIRE].

    ADS  Google Scholar 

  30. E.L. Berger, L.E. Gordon and M. Klasen, Spin dependence of massive lepton pair production in proton proton collisions, Phys. Rev. D 62 (2000) 014014 [hep-ph/9909446] [INSPIRE].

    ADS  Google Scholar 

  31. M. Brandt and M. Klasen, Parton densities from LHC vector boson production at small and large transverse momenta, arXiv:1305.5677 [INSPIRE].

  32. BRAHMS collaboration, I. Arsene et al., On the evolution of the nuclear modification factors with rapidity and centrality in d + Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, Phys. Rev. Lett. 93 (2004) 242303 [nucl-ex/0403005] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A.D. Martin, R. Roberts, W.J. Stirling and R. Thorne, Parton distributions: a new global analysis, Eur. Phys. J. C 4 (1998) 463 [hep-ph/9803445] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  36. F. Arleo, Hard pion and prompt photon at RHIC, from single to double inclusive production, JHEP 09 (2006) 015 [hep-ph/0601075] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Albino, B. Kniehl and R. Perez-Ramos, Medium-modified DGLAP evolution of fragmentation functions from large to small x, Nucl. Phys. B 819 (2009) 306 [arXiv:0903.4825] [INSPIRE].

    Article  ADS  Google Scholar 

  38. N. Borghini and U.A. Wiedemann, Distorting the hump-backed plateau of jets with dense QCD matter, hep-ph/0506218 [INSPIRE].

  39. S. Albino, M. Klasen and S. Soldner-Rembold, Strong coupling constant from the photon structure function, Phys. Rev. Lett. 89 (2002) 122004 [hep-ph/0205069] [INSPIRE].

    Article  ADS  Google Scholar 

  40. PHENIX collaboration, S. Adler et al., Centrality dependence of direct photon production in \( \sqrt{{{s_{NN }}}}=200 \) GeV Au + Au collisions, Phys. Rev. Lett. 94 (2005) 232301 [nucl-ex/0503003] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D.G. d’Enterria, Hard scattering cross-sections at LHC in the Glauber approach: from pp to pA and AA collisions, nucl-ex/0302016 [INSPIRE].

  42. ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV with ALICE, arXiv:1301.4361 [INSPIRE].

  43. I. Helenius, K.J. Eskola and H. Paukkunen, Centrality dependence of inclusive prompt photon production in d + Au, Au + Au, p + Pb and Pb + Pb collisions, JHEP 05 (2013) 030 [arXiv:1302.5580] [INSPIRE].

    Article  ADS  Google Scholar 

  44. C.E. Fink, Transverse resummation for direct photon production, hep-ph/0105276 [INSPIRE].

  45. E. Laenen, G.F. Sterman and W. Vogelsang, Higher order QCD corrections in prompt photon production, Phys. Rev. Lett. 84 (2000) 4296 [hep-ph/0002078] [INSPIRE].

    Article  ADS  Google Scholar 

  46. G.F. Sterman and W. Vogelsang, Recoil and power corrections in high-x T direct-photon production, Phys. Rev. D 71 (2005) 014013 [hep-ph/0409234] [INSPIRE].

    ADS  Google Scholar 

  47. F. Landry, R. Brock, P.M. Nadolsky and C. Yuan, Tevatron run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [hep-ph/0212159] [INSPIRE].

    ADS  Google Scholar 

  48. B. Zakharov, Induced photon emission from quark jets in ultrarelativistic heavy-ion collisions, JETP Lett. 80 (2004) 1 [Pisma Zh. Eksp. Teor. Fiz. 80 (2004) 3] [hep-ph/0405101] [INSPIRE].

  49. W. Liu and R. Fries, Probing nuclear matter with jet conversions, Phys. Rev. C 77 (2008) 054902 [arXiv:0801.0453] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Klasen.

Additional information

ArXiv ePrint: 1307.7034

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klasen, M., Klein-Bösing, C., König, F. et al. How robust is a thermal photon interpretation of the ALICE low-p T data?. J. High Energ. Phys. 2013, 119 (2013). https://doi.org/10.1007/JHEP10(2013)119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)119

Keywords

Navigation