Skip to main content
Log in

Centrality dependence of inclusive prompt photon production in d+Au, Au+Au, p+Pb, and Pb+Pb collisions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We calculate the centrality dependence of the midrapidity nuclear modification for inclusive prompt photon production in d+Au and Au+Au collisions at RHIC and in p+Pb and Pb+Pb collisions at the LHC. Our results, using the recent spatially dependent nuclear PDF set EPS09s, are consistent with the existing high-p T data from the PHENIX and CMS collaborations. The good agreement even in the case of nucleus+nucleus collisions suggests that the high-p T direct photon production is not significantly altered by the strongly interacting medium produced in such collisions. We find the centrality dependence of the nuclear modifications generally rather weak but perhaps measurable at low p T .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Adare et al., Direct photon production in d+Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, arXiv:1208.1234 [INSPIRE].

  2. PHENIX collaboration, B. Sahlmueller, Cold Nuclear Matter Effects in d+Au Collisions at PHENIX, arXiv:1210.5547 [INSPIRE].

  3. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [INSPIRE].

    Google Scholar 

  4. CTEQ collaboration, R. Brock et al., Handbook of perturbative QCD: Version 1.0, Rev. Mod. Phys. 67 (1995) 157 [INSPIRE].

    Article  Google Scholar 

  5. K. Eskola, H. Paukkunen and C. Salgado, EPS09: A new generation of NLO and LO nuclear parton distribution functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D. de Florian, R. Sassot, P. Zurita and M. Stratmann, Global analysis of nuclear parton distributions, Phys. Rev. D 85 (2012) 074028 [arXiv:1112.6324] [INSPIRE].

    ADS  Google Scholar 

  7. I. Schienbein et al., PDF Nuclear Corrections for Charged and Neutral Current Processes, Phys. Rev. D 80 (2009) 094004 [arXiv:0907.2357] [INSPIRE].

    ADS  Google Scholar 

  8. M. Hirai, S. Kumano and T.-H. Nagai, Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order, Phys. Rev. C 76 (2007) 065207 [arXiv:0709.3038] [INSPIRE].

    ADS  Google Scholar 

  9. K.J. Eskola, Global analysis of nuclear PDFs - latest developments, arXiv:1209.1546 [INSPIRE].

  10. I. Helenius, K.J. Eskola, H. Honkanen and C.A. Salgado, Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes, JHEP 07 (2012) 073 [arXiv:1205.5359] [INSPIRE].

    Article  ADS  Google Scholar 

  11. F. Arleo, K.J. Eskola, H. Paukkunen and C.A. Salgado, Inclusive prompt photon production in nuclear collisions at RHIC and LHC, JHEP 04 (2011) 055 [arXiv:1103.1471] [INSPIRE].

    Article  ADS  Google Scholar 

  12. F. Arleo and T. Gousset, Measuring gluon shadowing with prompt photons at RHIC and LHC, Phys. Lett. B 660 (2008) 181 [arXiv:0707.2944] [INSPIRE].

    ADS  Google Scholar 

  13. C. Brenner Mariotto and V. Goncalves, Nuclear shadowing and prompt photons in hadronic collisions at ultrarelativistic energies, Phys. Rev. C 78 (2008) 037901 [arXiv:0807.1680] [INSPIRE].

    ADS  Google Scholar 

  14. J. Albacete et al., Predictions for p+Pb Collisions at \( \sqrt{{{s_{NN }}}}=5 \) TeV, Int. J. Mod. Phys. E Vol. 22 (2013) 1330007 [arXiv:1301.3395] [INSPIRE].

    Article  Google Scholar 

  15. PHENIX collaboration, A. Adare et al., Evolution of π 0 suppression in Au+Au collisions from \( \sqrt{{{s_{NN }}}}=39 \) to 200 GeV, Phys. Rev. Lett. 109 (2012) 152301 [arXiv:1204.1526] [INSPIRE].

    Article  ADS  Google Scholar 

  16. STAR collaboration, B. Abelev et al., Neutral Pion Production in Au+Au Collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, Phys. Rev. C 80 (2009) 044905 [arXiv:0907.2721] [INSPIRE].

    ADS  Google Scholar 

  17. ATLAS collaboration, Measurement of Z boson Production in Pb+Pb Collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 110 (2013) 022301 [arXiv:1210.6486] [INSPIRE].

    Article  ADS  Google Scholar 

  18. CMS collaboration, Study of Z boson production in PbPb collisions at nucleon-nucleon centre of mass energy = 2.76 TeV, Phys. Rev. Lett. 106 (2011) 212301 [arXiv:1102.5435] [INSPIRE].

    Article  ADS  Google Scholar 

  19. CMS collaboration, Study of W boson production in PbPb and pp collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV, Phys. Lett. B 715 (2012) 66 [arXiv:1205.6334] [INSPIRE].

    ADS  Google Scholar 

  20. ALICE collaboration, Transverse Momentum Distribution and Nuclear Modification Factor of Charged Particles in p-Pb Collisions at \( \sqrt{{{s_{NN }}}}=5.02 \) TeV, arXiv:1210.4520 [INSPIRE].

  21. J. Owens, Large Momentum Transfer Production of Direct Photons, Jets and Particles, Rev. Mod. Phys. 59 (1987) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  22. P. Aurenche, R. Baier, M. Fontannaz and D. Schiff, Prompt Photon Production at Large p T Scheme Invariant QCD Predictions and Comparison with Experiment, Nucl. Phys. B 297 (1988) 661 [INSPIRE].

    Article  ADS  Google Scholar 

  23. P. Aurenche et al., A critical phenomenological study of inclusive photon production in hadronic collisions, Eur. Phys. J. C 9 (1999) 107 [hep-ph/9811382] [INSPIRE].

    ADS  Google Scholar 

  24. P. Aurenche, M. Fontannaz, J.-P. Guillet, E. Pilon and M. Werlen, A new critical study of photon production in hadronic collisions, Phys. Rev. D 73 (2006) 094007 [hep-ph/0602133] [INSPIRE].

    ADS  Google Scholar 

  25. R. Sassot, M. Stratmann and P. Zurita, Fragmentations Functions in Nuclear Media, Phys. Rev. D 81 (2010) 054001 [arXiv:0912.1311] [INSPIRE].

    ADS  Google Scholar 

  26. M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025] [INSPIRE].

    Article  ADS  Google Scholar 

  27. P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  28. L. Bourhis, M. Fontannaz and J. Guillet, Quarks and gluon fragmentation functions into photons, Eur. Phys. J. C 2 (1998) 529 [hep-ph/9704447] [INSPIRE].

    ADS  Google Scholar 

  29. PHENIX collaboration, S. Afanasiev et al., Measurement of Direct Photons in Au+Au Collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, Phys. Rev. Lett. 109 (2012) 152302 [arXiv:1205.5759] [INSPIRE].

    Article  ADS  Google Scholar 

  30. CMS collaboration, Measurement of isolated photon production in pp and PbPb collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV, Phys. Lett. B 710 (2012) 256 [arXiv:1201.3093] [INSPIRE].

    ADS  Google Scholar 

  31. ALICE collaboration, M. Wilde, Measurement of Direct Photons in pp and Pb-Pb Collisions with ALICE, Nucl. Phys. A (2012) [arXiv:1210.5958] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkka Helenius.

Additional information

ArXiv ePrint: 1302.5580

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helenius, I., Eskola, K.J. & Paukkunen, H. Centrality dependence of inclusive prompt photon production in d+Au, Au+Au, p+Pb, and Pb+Pb collisions. J. High Energ. Phys. 2013, 30 (2013). https://doi.org/10.1007/JHEP05(2013)030

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)030

Keywords

Navigation