Skip to main content
Log in

Wilson lines and entanglement entropy in higher spin gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Holographic entanglement entropy provides a direct connection between classical geometry and quantum entanglement; however the usual prescription does not apply to theories of higher spin gravity, where standard notions of geometry are no longer gauge invariant. We present a proposal for the holographic computation of entanglement entropy in field theories dual to higher spin theories of gravity in AdS3. These theories have a Chern-Simons description, and our proposal involves a Wilson line in an infinite-dimensional representation of the bulk gauge group. In the case of spin−2 gravity such Wilson lines are the natural coupling of a heavy point particle to gravity and so are equivalent to the usual prescription of Ryu and Takayanagi. For higher spin gravity they provide a natural generalization of these ideas. We work out spin−3 gravity in detail, showing that our proposal recovers many expected results and computes thermal entropies of black holes with higher spin charge, finding agreement with previous expressions in the literature. We encounter some peculiarities in the case of non-unitary RG flow backgrounds and outline future generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  3. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    MathSciNet  Google Scholar 

  4. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  7. T. Takayanagi, Entanglement entropy from a holographic viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Vasiliev, Progress in higher spin gauge theories, hep-th/0104246 [INSPIRE].

  9. X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].

  10. J. de Boer and J.I. Jottar, Entanglement entropy and higher spin holography in AdS 3, arXiv:1306.4347 [INSPIRE].

  11. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. E. Witten, Topology changing amplitudes in (2 + 1)-dimensional gravity, Nucl. Phys. B 323 (1989) 113 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Carlip, Exact quantum scattering in (2 + 1)-dimensional gravity, Nucl. Phys. B 324 (1989) 106 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Vaz and L. Witten, Wilson loops and black holes in (2 + 1)-dimensions, Phys. Lett. B 327 (1994) 29 [gr-qc/9401017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. P. de Sousa Gerbert, On spin and (quantum) gravity in (2 + 1)-dimensions, Nucl. Phys. B 346 (1990) 440 [INSPIRE].

    Article  ADS  Google Scholar 

  16. B.S. Skagerstam and A. Stern, Topological quantum mechanics in (2 + 1)-dimensions, Int. J. Mod. Phys. A 5 (1990) 1575 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional Anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. G. Dzhordzhadze, L. O’Raifeartaigh and I. Tsutsui, Quantization of a relativistic particle on the SL(2, \( \mathbb{R} \)) manifold based on Hamiltonian reduction, Phys. Lett. B 336 (1994) 388 [hep-th/9407059] [INSPIRE].

    ADS  Google Scholar 

  20. L.D. Faddeev and R. Jackiw, Hamiltonian reduction of unconstrained and constrained systems, Phys. Rev. Lett. 60 (1988) 1692 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S.M. Carroll, Spacetime and geometry: an introduction to general relativity, Addison-Wesley, San Francisco, U.S.A. (2004).

    Google Scholar 

  22. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical defects in higher spin theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. E. Bergshoeff, M. Blencowe and K. Stelle, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black holes and singularity resolution in higher spin gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Castro, E. Hijano and A. Lepage-Jutier, Unitarity bounds in AdS 3 higher spin gravity, JHEP 06 (2012) 001 [arXiv:1202.4467] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, arXiv:1302.0816 [INSPIRE].

  36. A. Perez, D. Tempo and R. Troncoso, Higher spin black hole entropy in three dimensions, arXiv:1301.0847 [INSPIRE].

  37. A. Perez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: black holes, global charges and thermodynamics, arXiv:1207.2844 [INSPIRE].

  38. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. V. Iyer and R.M. Wald, A comparison of Noether charge and euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. P. Kraus and T. Ugajin, An entropy formula for higher spin black holes via conical singularities, JHEP 05 (2013) 160 [arXiv:1302.1583] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. H. Casini and M. Huerta, A c-theorem for the entanglement entropy, J. Phys. A 40 (2007) 7031 [cond-mat/0610375] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. R.C. Myers and A. Singh, Comments on holographic entanglement entropy and RG flows, JHEP 04 (2012) 122 [arXiv:1202.2068] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Pakman and A. Parnachev, Topological entanglement entropy and holography, JHEP 07 (2008) 097 [arXiv:0805.1891] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. G. Compére and W. Song, W symmetry and integrability of higher spin black holes, arXiv:1306.0014 [INSPIRE].

  51. M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].

    Article  ADS  Google Scholar 

  52. D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].

    Article  MathSciNet  ADS  Google Scholar 

  53. T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  54. P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Iqbal.

Additional information

ArXiv ePrint: 1306.4338

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammon, M., Castro, A. & Iqbal, N. Wilson lines and entanglement entropy in higher spin gravity. J. High Energ. Phys. 2013, 110 (2013). https://doi.org/10.1007/JHEP10(2013)110

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)110

Keywords

Navigation