Skip to main content
Log in

Excess Higgs production in neutralino decays

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The ATLAS and CMS experiments have recently claimed discovery of a Higgs boson-like particle at ~5σ confidence and are beginning to test the Standard Model predictions for its production and decay. In a variety of supersymmetric models, a neutralino NLSP can decay dominantly to the Higgs and the LSP. In natural SUSY models, a light third generation squark decaying through this chain can lead to large excess Higgs production while evading existing BSM searches. Such models can be observed at the 8 TeV LHC in channels exploiting the rare diphoton decays of the Higgs produced in the cascade decay. Identifying a diphoton resonance in association with missing energy, a lepton, or b-tagged jets is a promising search strategy for discovery of these models, and would immediately signal new physics involving production of a Higgs boson. We also discuss the possibility that excess Higgs production in these SUSY decays can be responsible for enhancements of up to 50% over the SM prediction for the observed rate in the existing inclusive diphoton searches, a scenario which would likely by the end of the 8 TeV run be accompanied by excesses in the γγ + ℓ/MET and SUSY multi-lepton/b searches and a potential discovery in a γγ + 2b search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, PAS-HIG-12-015 (2012).

  3. M.A. Ajaib, I. Gogoladze and Q. Shafi, Higgs boson production and decay: effects from light third generation and vectorlike matter, arXiv:1207.7068 [INSPIRE].

  4. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  5. R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, arXiv:1207.1096 [INSPIRE].

  6. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, arXiv:1207.1718 [INSPIRE].

  7. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, arXiv:1207.1344 [INSPIRE].

  8. J. Ellis and T. You, Global analysis of experimental constraints on a possible Higgs-like particle with mass ∼ 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, arXiv:1207.1717 [INSPIRE].

  10. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  11. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, arXiv:1207.1347 [INSPIRE].

  12. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  13. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, arXiv:1207.1093 [INSPIRE].

  14. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, arXiv:1207.1716 [INSPIRE].

  15. M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, arXiv:1208.1765 [INSPIRE].

  16. F. del Aguila, G.L. Kane and M. Quirós, A possible method to produce and detect Higgs bosons at hadron colliders, Phys. Rev. Lett. 63 (1989) 942 [INSPIRE].

    Article  ADS  Google Scholar 

  17. F. del Aguila, L. Ametller, G.L. Kane and J. Vidal, Vector like fermion and standard Higgs production at hadron colliders, Nucl. Phys. B 334 (1990) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Sher, Fourth generation bdecays into b + Higgs bosons, Phys. Rev. D 61 (2000) 057303 [hep-ph/9908238] [INSPIRE].

    ADS  Google Scholar 

  19. J. Aguilar-Saavedra, Light Higgs boson discovery from fermion mixing, JHEP 12 (2006) 033 [hep-ph/0603200] [INSPIRE].

    Article  ADS  Google Scholar 

  20. C. Kilic, K. Kopp and T. Okui, LHC implications of the WIMP miracle and grand unification, Phys. Rev. D 83 (2011) 015006 [arXiv:1008.2763] [INSPIRE].

    ADS  Google Scholar 

  21. A. Carmona, M. Chala and J. Santiago, New Higgs production mechanism in composite Higgs models, JHEP 07 (2012) 049 [arXiv:1205.2378] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [INSPIRE].

    ADS  Google Scholar 

  23. P. Bandyopadhyay, E.J. Chun and J.-C. Park, Right-handed sneutrino dark matter in U(1)′ seesaw models and its signatures at the LHC, JHEP 06 (2011) 129 [arXiv:1105.1652] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Son, C. Spethmann and B. Tweedie, Diboson-jets and the search for resonant Zh production, JHEP 08 (2012) 160 [arXiv:1204.0525] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P. Bandyopadhyay, Higgs production in CP-violating supersymmetric cascade decays: probing theopen holeat the Large Hadron Collider, JHEP 08 (2011) 016 [arXiv:1008.3339] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Datta, A. Djouadi, M. Guchait and Y. Mambrini, Charged Higgs production from SUSY particle cascade decays at the CERN LHC, Phys. Rev. D 65 (2002) 015007 [hep-ph/0107271] [INSPIRE].

    ADS  Google Scholar 

  27. A. Datta, A. Djouadi, M. Guchait and F. Moortgat, Detection of MSSM Higgs bosons from supersymmetric particle cascade decays at the LHC, Nucl. Phys. B 681 (2004) 31 [hep-ph/0303095] [INSPIRE].

    Article  ADS  Google Scholar 

  28. F. de Campos, O. Eboli, M. Magro, D. Restrepo and J. Valle, Finding the Higgs boson through supersymmetry, Phys. Rev. D 80 (2009) 015002 [arXiv:0809.1637] [INSPIRE].

    ADS  Google Scholar 

  29. A. Fowler and G. Weiglein, Precise predictions for Higgs production in neutralino decays in the complex MSSM, JHEP 01 (2010) 108 [arXiv:0909.5165] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Gori, P. Schwaller and C.E. Wagner, Search for Higgs bosons in SUSY cascade decays and neutralino dark matter, Phys. Rev. D 83 (2011) 115022 [arXiv:1103.4138] [INSPIRE].

    ADS  Google Scholar 

  31. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering Higgs bosons of the MSSM using jet substructure, Phys. Rev. D 82 (2010) 095012 [arXiv:1006.1656] [INSPIRE].

    ADS  Google Scholar 

  32. O. Stal and G. Weiglein, Light NMSSM Higgs bosons in SUSY cascade decays at the LHC, JHEP 01 (2012) 071 [arXiv:1108.0595] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Azuelos et al., Exploring little Higgs models with ATLAS at the LHC, Eur. Phys. J. C 39S2 (2005) 13 [hep-ph/0402037] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G.D. Kribs, A. Martin and T.S. Roy, Higgs boson discovery through top-partners decays using jet substructure, Phys. Rev. D 84 (2011) 095024 [arXiv:1012.2866] [INSPIRE].

    ADS  Google Scholar 

  35. A. Azatov et al., Higgs boson production via vector-like top-partner decays: diphoton or multilepton plus multijets channels at the LHC, Phys. Rev. D 85 (2012) 115022 [arXiv:1204.0455] [INSPIRE].

    ADS  Google Scholar 

  36. N. Vignaroli, Discovering the composite Higgs through the decay of a heavy fermion, JHEP 07 (2012) 158 [arXiv:1204.0468] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H. Baer, V. Barger, A. Lessa, W. Sreethawong and X. Tata, Wh plus missing-E T signature from gaugino pair production at the LHC, Phys. Rev. D 85 (2012) 055022 [arXiv:1201.2949] [INSPIRE].

    ADS  Google Scholar 

  38. D. Ghosh, M. Guchait and D. Sengupta, Higgs signal in chargino-neutralino production at the LHC, arXiv:1202.4937 [INSPIRE].

  39. P. Byakti and D. Ghosh, Magic messengers in gauge mediation and signal for 125 GeV boosted Higgs boson, arXiv:1204.0415 [INSPIRE].

  40. M. Asano, H.D. Kim, R. Kitano and Y. Shimizu, Natural supersymmetry at the LHC, JHEP 12 (2010) 019 [arXiv:1010.0692] [INSPIRE].

    Article  ADS  Google Scholar 

  41. Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  42. K.T. Matchev and S.D. Thomas, Higgs and Z boson signatures of supersymmetry, Phys. Rev. D 62 (2000) 077702 [hep-ph/9908482] [INSPIRE].

    ADS  Google Scholar 

  43. P. Meade, M. Reece and D. Shih, Prompt decays of general neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J.T. Ruderman and D. Shih, General neutralino NLSPs at the early LHC, JHEP 08 (2012) 159 [arXiv:1103.6083] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Thaler and Z. Thomas, Goldstini can give the Higgs a boost, JHEP 07 (2011) 060 [arXiv:1103.1631] [INSPIRE].

    Article  ADS  Google Scholar 

  46. D. Das, U. Ellwanger and A.M. Teixeira, Modified signals for supersymmetry in the NMSSM with a singlino-like LSP, JHEP 04 (2012) 067 [arXiv:1202.5244] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Baryakhtar, N. Craig and K. Van Tilburg, Supersymmetry in the shadow of photini, JHEP 07 (2012) 164 [arXiv:1206.0751] [INSPIRE].

    Article  ADS  Google Scholar 

  48. J. Aguilar-Saavedra, New signals in pair production of heavy Q = 2/3 singlets at LHC, PoS(TOP2006)003 [hep-ph/0603199] [INSPIRE].

  49. J. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].

    Article  ADS  Google Scholar 

  50. K. Harigaya, S. Matsumoto, M.M. Nojiri and K. Tobioka, Search for the top partner at the LHC using multi-b-jet channels, Phys. Rev. D 86 (2012) 015005 [arXiv:1204.2317] [INSPIRE].

    ADS  Google Scholar 

  51. A. Girdhar and B. Mukhopadhyaya, A clean signal for a top-like isosinglet fermion at the Large Hadron Collider, arXiv:1204.2885 [INSPIRE].

  52. N. Vignaroli, Early discovery of top partners and test of the Higgs nature, arXiv:1207.0830 [INSPIRE].

  53. H. Baer, M. Bisset, X. Tata and J. Woodside, Supercollider signals from gluino and squark decays to Higgs bosons, Phys. Rev. D 46 (1992) 303 [INSPIRE].

    ADS  Google Scholar 

  54. P. Bandyopadhyay, A. Datta and B. Mukhopadhyaya, Signatures of gaugino mass non-universality in cascade Higgs production at the LHC, Phys. Lett. B 670 (2008) 5 [arXiv:0806.2367] [INSPIRE].

    ADS  Google Scholar 

  55. P. Bandyopadhyay, Probing non-universal gaugino masses via Higgs boson production under SUSY cascades at the LHC: A Detailed study, JHEP 07 (2009) 102 [arXiv:0811.2537] [INSPIRE].

    Article  ADS  Google Scholar 

  56. B. Bhattacherjee and A. Datta, Revealing the footprints of squark gluino production through Higgs search experiments at the Large Hadron Collider at 7 TeV and 14 TeV, JHEP 03 (2012) 006 [arXiv:1104.4529] [INSPIRE].

    Article  ADS  Google Scholar 

  57. I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].

    ADS  Google Scholar 

  58. K. Huitu, R. Kinnunen, J. Laamanen, S. Lehti, S. Roy, et al., Search for Higgs bosons in SUSY cascades in CMS and dark matter with non-universal gaugino masses, Eur. Phys. J. C 58 (2008) 591 [arXiv:0808.3094] [INSPIRE].

    Article  ADS  Google Scholar 

  59. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 4.7 fb −1 of \( \sqrt{s}=7\;TeV \) proton-proton collision data, ATLAS-CONF-2012-033 (2012).

  60. CMS collaboration, Interpretation of searches for supersymmetry, CMS-PAS-SUS-11-016 (2011).

  61. S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    ADS  Google Scholar 

  62. A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].

    Article  ADS  Google Scholar 

  63. A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    ADS  Google Scholar 

  64. K. Agashe and M. Graesser, Supersymmetry breaking and the supersymmetric flavor problem: an analysis of decoupling the first two generation scalars, Phys. Rev. D 59 (1999) 015007 [hep-ph/9801446] [INSPIRE].

    ADS  Google Scholar 

  65. D.E. Kaplan, F. Lepeintre, A. Masiero, A.E. Nelson and A. Riotto, Fermion masses and gauge mediated supersymmetry breaking from a single U(1), Phys. Rev. D 60 (1999) 055003 [hep-ph/9806430] [INSPIRE].

    ADS  Google Scholar 

  66. O. Aharony, L. Berdichevsky, M. Berkooz, Y. Hochberg and D. Robles-Llana, Inverted sparticle hierarchies from natural particle hierarchies, Phys. Rev. D 81 (2010) 085006 [arXiv:1001.0637] [INSPIRE].

    ADS  Google Scholar 

  67. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Zhuridov, Minimal flavour violation with hierarchical squark masses, JHEP 12 (2010) 070 [Erratum ibid. 1102 (2011) 044] [arXiv:1011.0730] [INSPIRE].

    Article  ADS  Google Scholar 

  68. N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].

    Article  ADS  Google Scholar 

  69. G. Larsen, Y. Nomura and H.L. Roberts, Supersymmetry with light stops, JHEP 06 (2012) 032 [arXiv:1202.6339] [INSPIRE].

    Article  ADS  Google Scholar 

  70. N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].

    Article  ADS  Google Scholar 

  71. N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].

    Article  ADS  Google Scholar 

  72. H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].

    Article  ADS  Google Scholar 

  73. T. Cohen, A. Hook and G. Torroba, An attractor for natural supersymmetry, arXiv:1204.1337 [INSPIRE].

  74. L. Randall and M. Reece, Single-scale natural SUSY, arXiv:1206.6540 [INSPIRE].

  75. R. Dermisek, Unusual Higgs or supersymmetry from natural electroweak symmetry breaking, Mod. Phys. Lett. A 24 (2009) 1631 [arXiv:0907.0297] [INSPIRE].

    ADS  Google Scholar 

  76. K. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs boson mass, sparticle spectrum and little hierarchy problem in extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].

    ADS  Google Scholar 

  77. P.W. Graham, A. Ismail, S. Rajendran and P. Saraswat, A little solution to the little hierarchy problem: a vector-like generation, Phys. Rev. D 81 (2010) 055016 [arXiv:0910.3020] [INSPIRE].

    ADS  Google Scholar 

  78. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].

    ADS  Google Scholar 

  79. K. Choi, K.S. Jeong, T. Kobayashi and K.-i. Okumura, Little SUSY hierarchy in mixed modulus-anomaly mediation, Phys. Lett. B 633 (2006) 355 [hep-ph/0508029] [INSPIRE].

    ADS  Google Scholar 

  80. R. Kitano and Y. Nomura, A solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039] [INSPIRE].

    ADS  Google Scholar 

  81. Z. Chacko, Y. Nomura and D. Tucker-Smith, A minimally fine-tuned supersymmetric standard model, Nucl. Phys. B 725 (2005) 207 [hep-ph/0504095] [INSPIRE].

    Article  ADS  Google Scholar 

  82. J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].

    ADS  Google Scholar 

  83. J.R. Espinosa and M. Quirós, Gauge unification and the supersymmetric light Higgs mass, Phys. Rev. Lett. 81 (1998) 516 [hep-ph/9804235] [INSPIRE].

    Article  ADS  Google Scholar 

  84. P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].

    Article  ADS  Google Scholar 

  85. A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  86. J. Casas, J. Espinosa and I. Hidalgo, The MSSM fine tuning problem: a way out, JHEP 01 (2004) 008 [hep-ph/0310137] [INSPIRE].

    Article  ADS  Google Scholar 

  87. A. Brignole, J. Casas, J. Espinosa and I. Navarro, Low scale supersymmetry breaking: effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) [hep-ph/0301121] [INSPIRE].

  88. R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].

    ADS  Google Scholar 

  89. S. Chang, C. Kilic and R. Mahbubani, The new fat Higgs: slimmer and more attractive, Phys. Rev. D 71 (2005) 015003 [hep-ph/0405267] [INSPIRE].

    ADS  Google Scholar 

  90. A. Delgado and T.M. Tait, A fat Higgs with a fat top, JHEP 07 (2005) 023 [hep-ph/0504224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  91. A. Birkedal, Z. Chacko and Y. Nomura, Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson, Phys. Rev. D 71 (2005) 015006 [hep-ph/0408329] [INSPIRE].

    ADS  Google Scholar 

  92. K. Babu, I. Gogoladze and C. Kolda, Perturbative unification and Higgs boson mass bounds, hep-ph/0410085 [INSPIRE].

  93. K. Choi, K.S. Jeong, T. Kobayashi and K.-i. Okumura, TeV scale mirage mediation and natural little SUSY hierarchy, Phys. Rev. D 75 (2007) 095012 [hep-ph/0612258] [INSPIRE].

    ADS  Google Scholar 

  94. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  95. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    Article  ADS  Google Scholar 

  96. H.M. Lee, V. Sanz and M. Trott, Hitting sbottom in natural SUSY, JHEP 05 (2012) 139 [arXiv:1204.0802] [INSPIRE].

    Article  ADS  Google Scholar 

  97. A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell, String photini at the LHC, Phys. Rev. D 81 (2010) 075018 [arXiv:0909.5440] [INSPIRE].

    ADS  Google Scholar 

  98. C. Brust, A. Katz and R. Sundrum, SUSY stops at a bump, JHEP 08 (2012) 059 [arXiv:1206.2353] [INSPIRE].

    Article  ADS  Google Scholar 

  99. N. Craig et al., Searching for t → ch with multi-leptons, arXiv:1207.6794 [INSPIRE].

  100. G.D. Kribs and A. Martin, Enhanced di-Higgs production through light colored scalars, arXiv:1207.4496 [INSPIRE].

  101. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  102. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  103. J. Conway, PGSPretty Good Simulation of high energy collisions, http://physics.ucdavis.edu/conway/research/software/pgs/pgs4-general.htm.

  104. LHC SUSY Cross section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections.

  105. W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].

    Article  ADS  Google Scholar 

  106. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  107. T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].

    ADS  Google Scholar 

  108. ATLAS collaboration, Search for gluino-mediated scalar top and bottom quark production in final states with missing transverse energy and at least three b-jets with the ATLAS Detector., ATLAS-CONF-2012-058 (2012).

  109. CMS collaboration, Search for supersymmetery in final states with missing transverse momentum and 0, 1, 2, or ≥ 3 b jets in 8 TeV pp collisions, PAS-SUS-12-016 (2012).

  110. CMS collaboration, S. Chatrchyan et al., Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at \( \sqrt{s}=7\;TeV \), JHEP 08 (2012) 110 [arXiv:1205.3933] [INSPIRE].

    ADS  Google Scholar 

  111. CMS collaboration, Search for supersymmetry in events with same-sign dileptons, PAS-SUS-12-017 (2012).

  112. CMS collaboration, S. Chatrchyan et al., Search for anomalous production of multilepton events in pp collisions at \( \sqrt{s}=7\;TeV \), JHEP 06 (2012) 169 [arXiv:1204.5341] [INSPIRE].

    Article  ADS  Google Scholar 

  113. E. Contreras-Campana et al., Multi-lepton signals of the Higgs boson, JHEP 04 (2012) 112 [arXiv:1112.2298] [INSPIRE].

    Article  ADS  Google Scholar 

  114. ATLAS collaboration, G. Aad et al., Search for scalar top quark pair production in natural gauge mediated supersymmetry models with the ATLAS detector in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 715 (2012) 44 [arXiv:1204.6736] [INSPIRE].

    ADS  Google Scholar 

  115. ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=7\;TeV \) pp collisions using 4.7 ifb of ATLAS data, ATLAS-CONF-2012-073 (2012).

  116. CMS collaboration, Higgs to γγ, fermiophobic, PAS-HIG-12-022 (2012).

  117. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7\;TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  118. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  119. CMS collaboration, Search for supersymmetry in events with photons and missing energy, PAS-SUS-12-018 (2012).

  120. CMS collaboration, Search for a Higgs boson decaying into two photons in the CMS detector, PAS-HIG-11-010 (2011).

  121. U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].

    ADS  Google Scholar 

  122. R. Contino et al., Anomalous couplings in double Higgs production, JHEP 08 (2012) 154 [arXiv:1205.5444] [INSPIRE].

    Article  ADS  Google Scholar 

  123. CMS collaboration, Status of b-tagging and vertexing tools for 2011 data analysis, PAS-BTV-11-002 (2011).

  124. ATLAS collaboration, Expected photon performance in the ATLAS experiment, PHYS-PUB-2011-007 (2011).

  125. CMS collaboration, Top pair cross section in e/μ + jets at 8 TeV, PAS-TOP-12-006 (2012).

  126. CMS collaboration, Search for the fermiophobic model Higgs boson decaying into two photons, PAS-HIG-12-002 (2012).

  127. ATLAS collaborationG. Aad et al., Search for the standard model Higgs boson in the H → WW (*) → lνlν decay mode with 4.7fb −1 of ATLAS data at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 716 (2012) 62 [arXiv:1206.0756] [INSPIRE].

    ADS  Google Scholar 

  128. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].

    ADS  Google Scholar 

  129. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the H → τ + τ decay mode in \( \sqrt{s}=7\;TeV \) pp collisions with ATLAS, JHEP 09 (2012) 070 [arXiv:1206.5971] [INSPIRE].

    Article  ADS  Google Scholar 

  130. CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].

    ADS  Google Scholar 

  131. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector, arXiv:1207.0210 [INSPIRE].

  132. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 284 [arXiv:1202.4195] [INSPIRE].

    ADS  Google Scholar 

  133. A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  134. K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, arXiv:1206.5303 [INSPIRE].

  135. M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, arXiv:1207.1445 [INSPIRE].

  136. B. Feigl, H. Rzehak and D. Zeppenfeld, New physics backgrounds to the H → WW search at the LHC?, arXiv:1205.3468 [INSPIRE].

  137. B. Feigl, H. Rzehak and D. Zeppenfeld, SUSY background to neutral MSSM Higgs boson searches, Eur. Phys. J. C 72 (2012) 1903 [arXiv:1108.1110] [INSPIRE].

    Article  ADS  Google Scholar 

  138. M. Lisanti and N. Weiner, Electroweakinos hiding in Higgs searches, Phys. Rev. D 85 (2012) 115005 [arXiv:1112.4834] [INSPIRE].

    ADS  Google Scholar 

  139. D. Curtin, P. Jaiswal and P. Meade, Charginos hiding in plain sight, arXiv:1206.6888 [INSPIRE].

  140. ATLAS collaboration, Search for the associated Higgs boson production in the WH → WWW (*) → lνlνlν decay mode using 4.7fb 1 of data collected with the atlas detector at \( \sqrt{s}=7\;TeV \), ATLAS-CONF-2012-078 (2012).

  141. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=7\;TeV \) pp collisions with the ATLAS detector, ATLAS-CONF-2012-077 (2012).

  142. CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for ICHEP 2012, PAS-HIG-12-019 (2012).

  143. CDF collaboration, T. Aaltonen et al., Search for Gluino-Mediated Sbottom Production in \( p\overline{p} \) Collisions at \( \sqrt{s}=1.96-TeV \), Phys. Rev. Lett. 102 (2009) 221801 [arXiv:0903.2618] [INSPIRE].

    Article  ADS  Google Scholar 

  144. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Saraswat.

Additional information

ArXiv ePrint: 1208.1542

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howe, K., Saraswat, P. Excess Higgs production in neutralino decays. J. High Energ. Phys. 2012, 65 (2012). https://doi.org/10.1007/JHEP10(2012)065

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)065

Keywords

Navigation