Skip to main content
Log in

From Petrov-Einstein to Navier–Stokes in spatially curved spacetime

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We generalize the framework in arXiv:1104.5502 to the case that an embedding may have a non-vanishing intrinsic curvature. Directly employing the Brown-York stress tensor as the fundamental variables, we study the effect of finite perturbations of the extrinsic curvature while keeping the intrinsic metric fixed. We show that imposing a Petrov type I condition on the hypersurface geometry may reduce to the incompressible Navier–Stokes equation for a fluid moving in spatially curved spacetime in the near-horizon limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Ph.D. thesis, Université Paris 6, Paris France (1979) [http://www.ihes.fr/damour/Articles/].

  2. T. Damour, Surface effects in black hole physics, in Proceedings of the Second Marcel Grossmann Meeting on General Relativity, R. Ruffini ed., North Holland, Amsterdam The Netherlands (1982).

    Google Scholar 

  3. R. Price and K. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [ INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. G. Policastro, D. Son and A. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [ INSPIRE].

    Article  ADS  Google Scholar 

  6. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [ INSPIRE].

    Article  ADS  Google Scholar 

  9. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [ INSPIRE].

    ADS  Google Scholar 

  10. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier–Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Eling, I. Fouxon and Y. Oz, The incompressible Navier–Stokes equations from membrane dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier–Stokes to Einstein, arXiv:1101.2451 [ INSPIRE].

  13. T. Padmanabhan, Entropy density of spacetime and the Navier–Stokes fluid dynamics of null surfaces, Phys. Rev. D 83 (2011) 044048 [arXiv:1012.0119] [ INSPIRE].

    ADS  Google Scholar 

  14. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Compere, P. McFadden, K. Skenderis and M. Taylor, The holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. R.-G. Cai, L. Li and Y.-L. Zhang, Non-relativistic fluid dual to asymptotically AdS gravity at finite cutoff surface, JHEP 07 (2011) 027 [arXiv:1104.3281] [ INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Niu, Y. Tian, X.-N. Wu and Y. Ling, Incompressible Navier–Stokes equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell theories, arXiv:1107.1430 [ INSPIRE].

  18. V. Lysov and A. Strominger, From Petrov-Einstein to Navier–Stokes, arXiv:1104.5502 [ INSPIRE].

  19. I. Bredberg and A. Strominger, Black holes as incompressible fluids on the sphere, arXiv:1106.3084 [ INSPIRE].

  20. T. Huang, Y. Ling, W. Pan, Y. Tian and X. Wu, Fluid/gravity duality with Petrov boundary condition in a spacetime with a cosmological constant, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Zhuo Huang.

Additional information

ArXiv ePrint: 1107.1464

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, TZ., Ling, Y., Pan, WJ. et al. From Petrov-Einstein to Navier–Stokes in spatially curved spacetime. J. High Energ. Phys. 2011, 79 (2011). https://doi.org/10.1007/JHEP10(2011)079

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)079

Keywords

Navigation