Skip to main content
Log in

The Nonvacuum Einstein Flow on Surfaces of Negative Curvature and Nonlinear Stability

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove future nonlinear stability for the Einstein–Vlasov system in 2+1 dimensions, for a manifold of the type \({\Sigma \times \mathbb{R}}\), where \({\Sigma}\) is closed with genus > 1, in the expanding direction. This is the first stability result for the Einstein–Vlasov system for the case of vanishing cosmological constant without symmetry assumptions in the cosmological case. As an essential part of the proof, we introduce a method to obtain decay for the distribution function by the construction of geometric Sobolev-type norms arising from the Sasaki metric on the tangent bundle of spacelike hypersurfaces. Those norms are modified by the implementation of a correction mechanism yielding energy estimates with optimal decay properties of the relevant norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson L., Moncrief V., Tromba A.J.: On the global evolution problem in 2+1 gravity. J. Geom. Phys. 23, 191–205 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Andersson, L., Moncrief, V.: Elliptic-hyperbolic systems and the Einstein equations. Ann. Henri Poincaré 1–34 (2003)

  3. Andersson L., Moncrief V.: Einstein Spaces as attractors for the Einstein Flow. J. Differ. Geom. 89, 1–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andréasson H.: Global foliations of matter spacetimes with Gowdy symmetry. Commun. Math. Phys. 206, 337–366 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Aubin, T.: Nonlinear Analysis on Manifolds. Monge-Ampère equations. Grundlehren der mathematischen Wissenschaften 252, Springer, Berlin (1982)

  6. Bardos C., Degond P.: Global existence for the Vlasov–Poisson equation in three space variables with small initial data. Ann. Inst. H. Poincaré (Analyse non linéaire) 2, 101–118 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Borisenko A.A., Yampol’skii A.L.: Riemannian geometry of fibre bundles. Russian Math. Surveys 46(6), 55–106 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Carlip S.: Quantum Gravity in 2+1 Dimensions, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  9. Choquet-Bruhat Y.: Problème de Cauchy pour le système intégro différentiel d’Einstein-Liouville. Ann. Inst. Fourier (Grenoble) 21, 181–201 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choquet-Bruhat, Y., Moncrief, V.: Existence theorem for solutions of Einstein’s equations with 1 parameter spacelike isometry groups. In: Brezis, H., Segal, I.E. (eds.) Proceedings of Symposia in Pure Mathematics, vol. 59, pp. 67–80. American Mathematical Society, Providence (1996)

  11. Choquet-Bruhat Y., Moncrief V.: Future global in time Einsteinian spacetimes with U(1) isometry group. Ann. Henri Poincaré 2, 1007–1064 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Choquet-Bruhat, Y., Cotsakis, S.: Global hyperbolicity and completeness. J. Geom. Phys. 345–350 (2002)

  13. Choquet-Bruhat, Y.: Future complete U(1) symmetric Einsteinian spacetimes, the unpolarized case. In: Chruściel, P. T., Friedrich, H. (eds.) The Einstein Equations and the Large Scale Behaviour of Gravitational Fields, pp. 251–298. Birkhäuser, Basel (2004)

  14. Dafermos M.: A note on the collapse of small data self-gravitating massless collisionless matter. J. Hyperbolic Differ. Equ. 3(4), 589–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ehlers, J.: Survey of General Relativity Theory. In: Israel, W. (ed.) Relativity, Astrophysics and Cosmology. D. Reidel Publishing Company (1973)

  16. Fajman D.: Local well-posedness for the Einstein–Vlasov system. SIAM J. Math. Anal. 48(5), 3270–3321 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fajman, D.: \({L^2}\)-estimates for transport equations on compact manifolds. In preparation (2016)

  18. Fajman, D., Joudioux, J., Smulevici, J.: A vector field method for relativistic transport equations with applications. arXiv:1510.04939 (2015)

  19. Fajman D.: Future asymptotic behavior of three-dimensional spacetimes with massive particles. Class. Quantum Gravity 33, 11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fajman, D.: The nonvacuum Einstein flow on surfaces of nonnegative curvature. In preparation (2016)

  21. Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge. Ann. Math. 171 (2010)

  22. Lindquist R.: Relativistic transport theory. Ann. Phys. 37, 487–518 (1966)

    Article  ADS  MATH  Google Scholar 

  23. Moncrief V.: Reduction of the Einstein equation in 2+1 dimensions to a Hamiltonian system over Teichmüller space. J. Math. Phys. 30, 2907–2914 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Nungesser E.: Future non-linear stability for solutions of the Einstein–Vlasov system of Bianchi types II and VI0. J. Math. Phys. 53, 102503 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Nungesser E.: Future non-linear stability for reflection symmetric solutions of the Einstein–Vlasov system of Bianchi types II and VI0. Ann. Henri Poincaré 14(4), 967–999 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Rein G., Rendall A.D.: Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Commun. Math. Phys. 150, 561–583 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Rendall, A.D.: Partial Differential Equations in General Relativity. Oxford Graduate Texts in Mathematics (2008)

  28. Rendall A.D.: An introduction to the Einstein–Vlasov system. Banach Centre Publications 41, 35–68 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Rendall, A.D.: The Einstein–Vlasov system. In: Chruściel, P.T., Friedrich, H. (eds.) The Einstein Equations and the Large Scale Behaviour of Gravitational Fields. Birkhäuser, Basel (2004)

  30. Ringström, H.: On the Topology and Future Stability of the Universe. Oxford Mathematical Monographs (2013)

  31. Rodnianski, I., Speck, J.: The stability of the irrotational Euler–Einstein System with a positive cosmological constant. arXiv:0911.5501v2 (2009)

  32. Sarbach O., Zannias T.: The geometry of the tangent bundle and the relativistic kinetic theory of gases. Class. Quantum Gravity 31, 8 (2014)

    Article  MATH  Google Scholar 

  33. Sasaki S.: On the differential geometry of tangent bundles of Riemannian manifolds. I. Tohôku Math. J. 14, 146–155 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smulevici J.: On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry. Anal. PDE 4, 191–245 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Taylor, M.: The global nonlinear stability of Minkowski space for the massless Einstein–Vlasov system. arXiv:1602.02611 (2016)

  36. Witten E.: 2+1-dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46–78 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Tromba, A.J.: Teichmüller Theory in Riemannian Geometry. Birkhäuser Verlag, Basel (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fajman.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajman, D. The Nonvacuum Einstein Flow on Surfaces of Negative Curvature and Nonlinear Stability. Commun. Math. Phys. 353, 905–961 (2017). https://doi.org/10.1007/s00220-017-2842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2842-9

Navigation