Skip to main content
Log in

The four-loop cusp anomalous dimension in \( \mathcal{N} \) = 4 super Yang-Mills and analytic integration techniques for Wilson line integrals

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Correlation functions of Wilson lines are relevant for describing the infrared structure of scattering amplitudes. We develop a new method for evaluating a wide class of such Wilson line integrals, and apply it to the calculation of the velocity-dependent cusp anomalous dimension in maximally supersymmetric Yang-Mills theory. We compute the four-loop non-planar correction in a recently introduced scaling limit. Moreover, we derive the full planar four-loop result by means of an ansatz which is based on the structure of known analytic results. We determine the coefficients in this ansatz by making use of a relationship to massive scattering amplitudes. As a corollary, our analytical result confirms the four-loop value of the light-like cusp anomalous dimension. Finally, we use the available perturbative data, as well as insight from AdS/CFT, in order to extrapolate the leading order values at strong coupling. The latter agree within two per cent with the corresponding string theory result, over a wide range of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of loop functions for all loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].

    ADS  Google Scholar 

  3. G. Korchemsky and A. Radyushkin, Loop space formalism and renormalization group for the infrared asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [INSPIRE].

    Article  ADS  Google Scholar 

  5. E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

    Article  ADS  Google Scholar 

  6. L.J. Dixon, Matter dependence of the three-loop soft anomalous dimension matrix, Phys. Rev. D 79 (2009) 091501 [arXiv:0901.3414] [INSPIRE].

    ADS  Google Scholar 

  7. T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. V. Ahrens, M. Neubert and L. Vernazza, Structure of infrared singularities of gauge-theory amplitudes at three and four loops, JHEP 09 (2012) 138 [arXiv:1208.4847] [INSPIRE].

    Article  ADS  Google Scholar 

  10. T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021] [INSPIRE].

    ADS  Google Scholar 

  11. G. Korchemsky and A. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    Article  ADS  Google Scholar 

  12. D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Caron-Huot, Loops in spacetime, talk given at Scattering amplitudes: from QCD to maximally supersymmetric Yang-Mills theory and back, July 16–20, Trento, Italy (2012).

  14. N. Arkani-Hamed et al., Scattering amplitudes and the positive grassmannian, arXiv:1212.5605 [INSPIRE].

  15. A.E. Lipstein and L. Mason, From the holomorphic Wilson loop tod logloop-integrands for super-Yang-Mills amplitudes, JHEP 05 (2013) 106 [arXiv:1212.6228] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].

    Article  ADS  Google Scholar 

  18. N. Drukker, Integrable Wilson loops, arXiv:1203.1617 [INSPIRE].

  19. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Bykov and K. Zarembo, Ladders for Wilson loops beyond leading order, JHEP 09 (2012) 057 [arXiv:1206.7117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. J.M. Henn and T. Huber, Systematics of the cusp anomalous dimension, JHEP 11 (2012) 058 [arXiv:1207.2161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Frenkel and J. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. van Ritbergen, A. Schellekens and J. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].

    Article  ADS  Google Scholar 

  27. T. van Ritbergen, J. Vermaseren and S. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Czakon, J. Gluza and T. Riemann, Master integrals for massive two-loop bhabha scattering in QED, Phys. Rev. D 71 (2005) 073009 [hep-ph/0412164] [INSPIRE].

    ADS  Google Scholar 

  29. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Fiol, B. Garolera and A. Lewkowycz, Exact results for static and radiative fields of a quark in N = 4 super Yang-Mills, JHEP 05 (2012) 093 [arXiv:1202.5292] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Erickson, G. Semenoff, R. Szabo and K. Zarembo, Static potential in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 61 (2000) 105006 [hep-th/9911088] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. A. Pineda, The static potential in N = 4 supersymmetric Yang-Mills at weak coupling, Phys. Rev. D 77 (2008) 021701 [arXiv:0709.2876] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. M. Stahlhofen, NLL resummation for the static potential in N = 4 SYM theory, JHEP 11 (2012)155 [arXiv:1209.2122] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett. A 4 (1989) 1257 [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].

    Article  ADS  Google Scholar 

  36. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012) 846 [hep-ph/0703052] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1 [cs/0004015].

    Article  MathSciNet  MATH  Google Scholar 

  41. F.C. Brown, Multiple zeta values and periods of moduli spaces M 0,n , Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].

    MATH  Google Scholar 

  42. G. A.B., A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE].

  43. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. Y. Makeenko, Topics in cusped/lightcone Wilson loops, Acta Phys. Polon. B 39 (2008) 3047 [arXiv:0810.2183] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in N = 4 SYM: exponentiation and Regge limits, JHEP 04 (2010) 038 [arXiv:1001.1358] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in Higgs-regulated N = 4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. M. Czakon, http://mbtools.hepforge.org/.

  51. Y. Makeenko, P. Olesen and G.W. Semenoff, Cusped SYM Wilson loop at two loops and beyond, Nucl. Phys. B 748 (2006) 170 [hep-th/0602100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].

    Article  ADS  Google Scholar 

  53. N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].

    Article  ADS  Google Scholar 

  54. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. F. Cachazo, M. Spradlin and A. Volovich, Four-loop cusp anomalous dimension from obstructions, Phys. Rev. D 75 (2007) 105011 [hep-th/0612309] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

    Article  Google Scholar 

  57. F. Cachazo, M. Spradlin and A. Volovich, Four-loop collinear anomalous dimension in N = 4 Yang-Mills theory, Phys. Rev. D 76 (2007) 106004 [arXiv:0707.1903] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. A.V. Belitsky, A. Gorsky and G. Korchemsky, Gauge/string duality for QCD conformal operators, Nucl. Phys. B 667 (2003) 3 [hep-th/0304028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. A. Kotikov, L. Lipatov and V. Velizhanin, Anomalous dimensions of Wilson operators in N =4 SYM theory, Phys. Lett. B 557 (2003) 114 [hep-ph/0301021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999)125006 [hep-th/9904191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. M. Kruczenski, A note on twist two operators in N = 4 SYM and Wilson loops in Minkowski signature, JHEP 12 (2002) 024 [hep-th/0210115] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. V. Forini, Quark-antiquark potential in AdS at one loop, JHEP 11 (2010) 079 [arXiv:1009.3939] [INSPIRE].

    Article  ADS  Google Scholar 

  63. R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. A. Mitov, G.F. Sterman and I. Sung, The massive soft anomalous dimension matrix at two loops, Phys. Rev. D 79 (2009) 094015 [arXiv:0903.3241] [INSPIRE].

    ADS  Google Scholar 

  65. Y.-T. Chien, M.D. Schwartz, D. Simmons-Duffin and I.W. Stewart, Jet physics from static charges in AdS, Phys. Rev. D 85 (2012) 045010 [arXiv:1109.6010] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Huber.

Additional information

ArXiv ePrint: 1304.6418

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henn, J.M., Huber, T. The four-loop cusp anomalous dimension in \( \mathcal{N} \) = 4 super Yang-Mills and analytic integration techniques for Wilson line integrals. J. High Energ. Phys. 2013, 147 (2013). https://doi.org/10.1007/JHEP09(2013)147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)147

Keywords

Navigation