Skip to main content
Log in

Structure of infrared singularities of gauge-theory amplitudes at three and four loops

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The infrared divergences of massless n-parton scattering amplitudes can be derived from the anomalous dimension of n-jet operators in soft-collinear effective theory. Up to three-loop order, the latter has been shown to have a very simple structure: it contains pairwise color-dipole interactions among the external partons, governed by the cusp anomalous dimension and a logarithm of the kinematic invariants s ij , plus a possible three-loop correlation involving four particles, which is described by a yet unknown function of conformal cross ratios of kinematic invariants. This function is constrained by two-particle collinear limits and by the known behavior of amplitudes in the high-energy limit. We construct a class of relatively simple functions satisfying these constraints. We also extend the analysis to four-loop order, finding that three additional four-particle correlations and a single five-particle correlation appear, which again are governed by functions of conformal cross ratios. Our results suggest that the dipole conjecture, which states that only two-particle color-dipole correlations appear in the anomalous dimension, may need to be generalized. We present a weaker form of the conjecture, stating that to all orders in perturbation theory corrections to the dipole formula are governed by functions of conformal cross ratios, and are \( \mathcal{O}(1/N_{\mathrm{c}}^2) \) suppressed relative to the dipole term. If true, this conjecture implies that the cusp anomalous dimension obeys Casimir scaling to all orders in perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].

    Article  ADS  Google Scholar 

  2. I. Korchemskaya and G. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys. B 437 (1995) 127 [hep-ph/9409446] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503–504] [hep-ph/9605323] [INSPIRE].

    Article  ADS  Google Scholar 

  4. T. Becher, R.J. Hill, B.O. Lange and M. Neubert, External operators and anomalous dimensions in soft collinear effective theory, Phys. Rev. D 69 (2004) 034013 [hep-ph/0309227] [INSPIRE].

    ADS  Google Scholar 

  5. I. Korchemskaya and G. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].

    Article  ADS  Google Scholar 

  6. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  7. E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

    Article  ADS  Google Scholar 

  8. T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Frenkel and J. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  11. E. Gardi, E. Laenen, G. Stavenga and C.D. White, Webs in multiparton scattering using the replica trick, JHEP 11 (2010) 155 [arXiv:1008.0098] [INSPIRE].

    Article  ADS  Google Scholar 

  12. F.A. Berends and W. Giele, Multiple soft gluon radiation in parton processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319 [hep-ph/9901201] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Armoni, Anomalous dimensions from a spinning D5-brane, JHEP 11 (2006) 009 [hep-th/0608026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, An infrared approach to Reggeization, Phys. Rev. D 85 (2012) 071104 [arXiv:1108.5947] [INSPIRE].

    ADS  Google Scholar 

  21. V. Del Duca, C. Duhr, E. Gardi, L. Magnea and C.D. White, The infrared structure of gauge theory amplitudes in the high-energy limit, JHEP 12 (2011) 021 [arXiv:1109.3581] [INSPIRE].

    Article  ADS  Google Scholar 

  22. I.I. Balitsky, L.N. Lipatov and V.S. Fadin, Regge processes in nonabelian gauge theories (in Russian), in Proceedings of Leningrad Winter School on Physics of Elementary Particles, Leningrad, Russia (1979).

    Google Scholar 

  23. A. Bogdan and V. Fadin, A proof of the reggeized form of amplitudes with quark exchanges, Nucl. Phys. B 740 (2006) 36 [hep-ph/0601117] [INSPIRE].

    Article  ADS  Google Scholar 

  24. V. Fadin, R. Fiore, M. Kozlov and A. Reznichenko, Proof of the multi-Regge form of QCD amplitudes with gluon exchanges in the NLA, Phys. Lett. B 639 (2006) 74 [hep-ph/0602006] [INSPIRE].

    Article  ADS  Google Scholar 

  25. I. Korchemskaya and G. Korchemsky, Evolution equation for gluon Regge trajectory, Phys. Lett. B 387 (1996) 346 [hep-ph/9607229] [INSPIRE].

    Article  ADS  Google Scholar 

  26. Y. Dokshitzer and G. Marchesini, Soft gluons at large angles in hadron collisions, JHEP 01 (2006) 007 [hep-ph/0509078] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Z. Bern, J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity, Phys. Rev. D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].

    ADS  Google Scholar 

  28. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: is factorization violated?, JHEP 07 (2012) 026 [arXiv:1112.4405] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.R. Forshaw, M.H. Seymour and A. Siodmok, On the breaking of collinear factorization in QCD, arXiv:1206.6363 [INSPIRE].

  31. S. Moch, J. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Catani, D. de Florian and G. Rodrigo, The triple collinear limit of one loop QCD amplitudes, Phys. Lett. B 586 (2004) 323 [hep-ph/0312067] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Ahrens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrens, V., Neubert, M. & Vernazza, L. Structure of infrared singularities of gauge-theory amplitudes at three and four loops. J. High Energ. Phys. 2012, 138 (2012). https://doi.org/10.1007/JHEP09(2012)138

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)138

Keywords

Navigation