Skip to main content
Log in

Higgs-regularized three-loop four-gluon amplitude in \( \mathcal{N} = 4 \) SYM: exponentiation and Regge limits

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the three-loop contribution to the \( \mathcal{N} = 4 \) supersymmetric Yang-Mills planar four-gluon amplitude using the recently-proposed Higgs IR regulator of Alday, Henn, Plefka, and Schuster. In particular, we test the proposed exponential ansatz for the four-gluon amplitude that is the analog of the BDS ansatz in dimensional regularization. By evaluating our results at a number of kinematic points, and also in several kinematic limits, we establish the validity of this ansatz at the three-loop level.

We also examine the Regge limit of the planar four-gluon amplitude using several different IR regulators: dimensional regularization, Higgs regularization, and a cutoff regularization. In the latter two schemes, it is shown that the leading logarithmic (LL) behavior of the amplitudes, and therefore the lowest-order approximation to the gluon Regge trajectory, can be correctly obtained from the ladder approximation of the sum of diagrams. In dimensional regularization, on the other hand, there is no single dominant set of diagrams in the LL approximation. We also compute the NLL and NNLL behavior of the L-loop ladder diagram using Higgs regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon Wilson Loop in \( \mathcal{N} = 4 \) SYM, arXiv:0911.5332 [SPIRES].

  8. J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Brandhuber, P. Heslop and G. Travaglini, MHV Amplitudes in \( \mathcal{N} = 4 \) Super Yang-Mills and Wilson Loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. L.F. Alday and R. Roiban, Scattering Amplitudes, Wilson Loops and the String/Gauge Theory Correspondence, Phys. Rept. 468 (2008) 153 [arXiv:0807.1889] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. J.M. Henn, Duality between Wilson loops and gluon amplitudes, Fortsch. Phys. 57 (2009) 729 [arXiv:0903.0522] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  14. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in \( \mathcal{N} = 4 \) super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the \( \mathcal{N} = 4 \) super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. J.M. Drummond and J.M. Henn, All tree-level amplitudes in \( \mathcal{N} = 4 \) SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Berkovits and J. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual Superconformal Symmetry from AdS 5 timesS 5 Superstring Integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. N. Beisert, T-duality, Dual Conformal Symmetry and Integrability for Strings on AdS 5 × S 5, Fortschr. Phys. 57 (2009) 329 [arXiv:0903.0609] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  21. J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. G.P. Korchemsky and E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in \( \mathcal{N} = 4 \) SYM theory, Nucl. Phys. B 832 (2010) 1 [arXiv:0906.1737] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, Exacting \( \mathcal{N} = 4 \) Superconformal Symmetry, JHEP 11 (2009) 056 [arXiv:0905.3738] [SPIRES].

    Article  ADS  Google Scholar 

  24. A. Sever and P. Vieira, Symmetries of the \( \mathcal{N} = 4 \) SYM S-matrix, arXiv:0908.2437 [SPIRES].

  25. L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of \( \mathcal{N} = 4 \) super Yang- Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [SPIRES].

    Article  Google Scholar 

  26. H. Kawai and T. Suyama, Some Implications of Perturbative Approach to AdS/CFT Correspondence, Nucl. Phys. B 794 (2008) 1 [arXiv:0708.2463] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. R.M. Schabinger, Scattering on the Moduli Space of \( \mathcal{N} = 4 \) Super Yang-Mills, arXiv:0801.1542 [SPIRES].

  28. J. McGreevy and A. Sever, Planar scattering amplitudes from Wilson loops, JHEP 08 (2008) 078 [arXiv:0806.0668] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes, JHEP 05 (2007) 001 [hep-ph/0612149] [SPIRES].

    Article  ADS  Google Scholar 

  30. V.S. Fadin, R. Fiore and M.I. Kotsky, GluonRegge trajectory in the two-loop approximation, Phys. Lett. B 387 (1996) 593 [hep-ph/9605357] [SPIRES].

    ADS  Google Scholar 

  31. A.V. Kotikov and L.N. Lipatov, NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories, Nucl. Phys. B 582 (2000) 19 [hep-ph/0004008] [SPIRES].

    Article  ADS  Google Scholar 

  32. S.G. Naculich and H.J. Schnitzer, Regge behavior of gluon scattering amplitudes in \( \mathcal{N} = 4 \) SYM theory, Nucl. Phys. B 794 (2008) 189 [arXiv:0708.3069] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. V. Del Duca and E.W.N. Glover, Testing high-energy factorization beyond the next-to-leading-logarithmic accuracy, JHEP 05 (2008) 056 [arXiv:0802.4445] [SPIRES].

    Article  ADS  Google Scholar 

  34. S.G. Naculich and H.J. Schnitzer, IR divergences andRegge limits of subleading-color contributions to the four-gluon amplitude in \( \mathcal{N} = 4 \) SYM Theory, JHEP 10 (2009) 048 [arXiv:0907.1895] [SPIRES].

    Article  ADS  Google Scholar 

  35. V. Del Duca, C. Duhr and E.W.N. Glover, Iterated amplitudes in the high-energy limit, JHEP 12 (2008) 097 [arXiv:0809.1822] [SPIRES].

    Article  ADS  Google Scholar 

  36. R.J. Eden, P.V. Landshoff, D.I. Olive, and J.C. Polkinghorne, The Analytic S-Matrix, Cambridge University Press, Cambridge U.K. (1966).

    MATH  Google Scholar 

  37. R.C. Brower, H. Nastase, H.J. Schnitzer and C.-I. Tan, Implications of multi-Regge limits for the Bern-Dixon-Smirnov conjecture, Nucl. Phys. B 814 (2009) 293 [arXiv:0801.3891] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [SPIRES].

    ADS  Google Scholar 

  39. J. Bartels, L.N. Lipatov and A. Sabio Vera, \( \mathcal{N} = 4 \) supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [SPIRES].

    Article  ADS  Google Scholar 

  40. R.C. Brower, H. Nastase, H.J. Schnitzer and C.-I. Tan, Analyticity for Multi-Regge Limits of the Bern-Dixon-Smirnov Amplitudes, Nucl. Phys. B 822 (2009) 301 [arXiv:0809.1632] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. R.M. Schabinger, The Imaginary Part of the \( \mathcal{N} = 4 \) super-Yang-Mills Two-Loop Six-Point MHV Amplitude in Multi-Regge Kinematics, JHEP 11 (2009) 108 [arXiv:0910.3933] [SPIRES].

    Article  ADS  Google Scholar 

  42. H.J. Schnitzer, Reggeization of \( \mathcal{N} = 8 \) Supergravity and \( \mathcal{N} = 4 \) Yang-Mills Theory II, arXiv:0706.0917 [SPIRES].

  43. M.L. Mangano, S.J. Parke and Z. Xu, Duality and Multi-Gluon Scattering, Nucl. Phys. B 298 (1988) 653 [SPIRES].

    Article  ADS  Google Scholar 

  44. F.A. Berends and W. Giele, The Six Gluon Process as an Example of Weyl-Van Der Waerden Spinor Calculus, Nucl. Phys. B 294 (1987) 700 [SPIRES].

    Article  ADS  Google Scholar 

  45. M.L. Mangano, The Color Structure of Gluon Emission, Nucl. Phys. B 309 (1988) 461 [SPIRES].

    Article  ADS  Google Scholar 

  46. D.J. Broadhurst, Summation of an infinite series of ladder diagrams, Phys. Lett. B 307 (1993) 132 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for \( \mathcal{N} = 4 \) super-amplitudes, arXiv:0808.0491 [SPIRES].

  50. A. Brandhuber, P. Heslop and G. Travaglini, One-Loop Amplitudes in \( \mathcal{N} = 4 \) Super Yang-Mills and Anomalous Dual Conformal Symmetry, JHEP 08 (2009) 095 [arXiv:0905.4377] [SPIRES].

    Article  ADS  Google Scholar 

  51. H. Elvang, D.Z. Freedman and M. Kiermaier, Dual conformal symmetry of 1-loop NMHV amplitudes in \( \mathcal{N} = 4 \) SYM theory, JHEP 03 (2010) 075 [arXiv:0905.4379] [SPIRES].

    Article  Google Scholar 

  52. A. Brandhuber, P. Heslop and G. Travaglini, Proof of the Dual Conformal Anomaly of One-Loop Amplitudes in N = 4 SYM, JHEP 10 (2009) 063 [arXiv:0906.3552] [SPIRES].

    Article  ADS  Google Scholar 

  53. I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [SPIRES].

    ADS  Google Scholar 

  54. V.A. Smirnov, Analytical result for dimensionally regularized massless on-shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [SPIRES].

    ADS  Google Scholar 

  55. D. Nguyen, M. Spradlin and A. Volovich, New Dual Conformally Invariant Off-Shell Integrals, Phys. Rev. D 77 (2008) 025018 [arXiv:0709.4665] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  56. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].

    Article  ADS  Google Scholar 

  58. E.I. Buchbinder and F. Cachazo, Two-loop amplitudes of gluons and octa-cuts in \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 11 (2005) 036 [hep-th/0506126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. F. Cachazo and D. Skinner, On the structure of scattering amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills and \( \mathcal{N} = 8 \) supergravity, arXiv:0801.4574 [SPIRES].

  60. S. Mandelstam, Non-Regge Terms in the Vector-Spinor Theory, Phys. Rev. 137 (1965) B949 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. M.T. Grisaru, H.J. Schnitzer and H.-S. Tsao, Reggeization of Yang-Mills gauge mesons in theories with a spontaneously broken symmetry, Phys. Rev. Lett. 30 (1973) 811 [SPIRES].

    Article  ADS  Google Scholar 

  62. M.T. Grisaru, H.J. Schnitzer and H.-S. Tsao, Reggeization of elementary particles in renormalizable gauge theories — vectors and spinors, Phys. Rev. D 8 (1973) 4498 [SPIRES].

    ADS  Google Scholar 

  63. M.T. Grisaru and H.J. Schnitzer, Reggeization of gauge vector mesons and unified theories, Phys. Rev. D 20 (1979) 784 [SPIRES].

    ADS  Google Scholar 

  64. M.T. Grisaru and H.J. Schnitzer, Bound states in \( \mathcal{N} = 8 \) supergravity and \( \mathcal{N} = 4 \) supersymmetric Yang-Mills theories, Nucl. Phys. B 204 (1982) 267 [SPIRES].

    Article  ADS  Google Scholar 

  65. J. Gluza, K. Kajda and T. Riemann, AMBRE — a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals, Comput. Phys. Commun. 177 (2007) 879 [arXiv:0704.2423] [SPIRES].

    Article  ADS  Google Scholar 

  66. A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. G.P. Korchemsky and A.V. Radyushkin, Loop space formalism and renormalization group for the infrared asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [SPIRES].

    ADS  Google Scholar 

  68. S.V. Ivanov, G.P. Korchemsky and A.V. Radyushkin, Infrared asymptotics of perturbative QCD: contour gauges, Yad. Fiz. 44 (1986) 230 [Sov. J. Nucl. Phys. 44 (1986) 145] [SPIRES].

    Google Scholar 

  69. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [SPIRES].

    Article  ADS  Google Scholar 

  70. G.P. Korchemsky and A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [SPIRES].

    ADS  Google Scholar 

  71. M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [SPIRES].

    Article  ADS  Google Scholar 

  72. C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals, Comput. Phys. Commun. 178 (2008) 596 [arXiv:0709.4092] [SPIRES].

    Article  ADS  Google Scholar 

  73. N.I. Usyukina and A.I. Davydychev, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B 298 (1993) 363 [SPIRES].

    ADS  Google Scholar 

  74. V.A. Smirnov, Feynman integral calculus, Springer-Verlag, Berlin Germany (2006).

    Google Scholar 

  75. T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  76. V.N. Gribov, The Theory of Complex Angular Momenta, Cambridge University Press, Cambridge U.K. (2003).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Naculich.

Additional information

ArXiv ePrint: 1001.1358

Research supported in part by the NSF under grant PHY-0756518. (Stephen G. Naculich)

Research supported in part by the DOE under grant DE-FG02-92ER40706. (Howard J. Schnitzer)

Research supported in part by the DOE under grant DE-FG02-91ER40688. (Marcus Spradlin)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henn, J.M., Naculich, S.G., Schnitzer, H.J. et al. Higgs-regularized three-loop four-gluon amplitude in \( \mathcal{N} = 4 \) SYM: exponentiation and Regge limits. J. High Energ. Phys. 2010, 38 (2010). https://doi.org/10.1007/JHEP04(2010)038

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)038

Keywords

Navigation