Skip to main content
Log in

Improving electro-weak fits with TeV-scale sterile neutrinos

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the impact of TeV-scale sterile neutrinos on electro-weak precision observables and lepton number and flavour violating decays in the framework of a type-I see-saw extension of the Standard Model. At tree level sterile neutrinos manifest themselves via non-unitarity of the PMNS matrix and at one-loop level they modify the oblique radiative corrections. We derive explicit formulae for the S, T, U parameters in terms of the neutrino masses and mixings and perform a numerical fit to the electro-weak observables. We find regions of parameter space with a sizable active-sterile mixing which provide a better over-all fit compared to the case where the mixing is negligible. Specifically we find improvements of the invisible Z-decay width, the charged-to-neutral-current ratio for neutrino scattering experiments and of the deviation of the W boson mass from the theoretical expectation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  3. P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  4. T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103.

    Article  ADS  Google Scholar 

  5. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. Van Nieuwenhuizen and D.Z. Freedman eds., (1979), pg. 315.

  7. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Google Scholar 

  8. G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].

    Article  ADS  Google Scholar 

  9. F.R. Klinkhamer and N. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].

    ADS  Google Scholar 

  10. V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Google Scholar 

  11. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. G. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Blanchet and P. Di Bari, The minimal scenario of leptogenesis, New J. Phys. 14 (2012) 125012 [arXiv:1211.0512] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: Vertex contribution to the CP-violating parameter, Phys. Rev. D 80 (2009) 125027 [arXiv:0909.1559] [INSPIRE].

    ADS  Google Scholar 

  16. M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: Self-energy contribution to the CP-violating parameter, Phys. Rev. D 81 (2010) 085027 [arXiv:0911.4122] [INSPIRE].

    ADS  Google Scholar 

  17. M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating parameter in leptogenesis, Phys. Rev. D 81 (2010) 085028 [arXiv:1002.0331] [INSPIRE].

    ADS  Google Scholar 

  18. M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Finite Number Density Corrections to Leptogenesis, Nucl. Phys. B 838 (2010) 1 [arXiv:1002.1326] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Garny, A. Hohenegger and A. Kartavtsev, Quantum corrections to leptogenesis from the gradient expansion, arXiv:1005.5385 [INSPIRE].

  20. B. Garbrecht, Leptogenesis: The Other Cuts, Nucl. Phys. B 847 (2011) 350 [arXiv:1011.3122] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Drewes and B. Garbrecht, Leptogenesis from a GeV Seesaw without Mass Degeneracy, JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].

    Article  ADS  Google Scholar 

  22. T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev and D. Mitrouskas, Systematic approach to thermal leptogenesis, Phys. Rev. D 87 (2013) 085009 [arXiv:1211.2140] [INSPIRE].

    ADS  Google Scholar 

  23. K. Dick, M. Lindner, M. Ratz and D. Wright, Leptogenesis with Dirac neutrinos, Phys. Rev. Lett. 84 (2000) 4039 [hep-ph/9907562] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E.K. Akhmedov, V. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

    Article  ADS  Google Scholar 

  25. X.-D. Shi and G.M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Asaka and M. Shaposhnikov, The nuMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

    ADS  Google Scholar 

  27. M. Shaposhnikov, The nuMSM, leptonic asymmetries and properties of singlet fermions, JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The Role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0901.0011] [INSPIRE].

    Article  ADS  Google Scholar 

  29. F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino Dark Matter in gauge extensions of the Standard Model, Phys. Rev. D 81 (2010) 085032 [arXiv:0912.4415] [INSPIRE].

    ADS  Google Scholar 

  30. F. Bezrukov, A. Kartavtsev and M. Lindner, Leptongenesis in models with keV sterile neutrino dark matter, arXiv:1204.5477 [INSPIRE].

  31. L. Canetti, M. Drewes and M. Shaposhnikov, Sterile Neutrinos as the Origin of Dark and Baryonic Matter, Phys. Rev. Lett. 110 (2013) 061801 [arXiv:1204.3902] [INSPIRE].

    Article  ADS  Google Scholar 

  32. L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, arXiv:1208.4607 [INSPIRE].

  33. T. Lasserre, The reactor antineutrino anomaly, J. Phys. Conf. Ser. 375 (2012) 042042 [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].

    Article  ADS  Google Scholar 

  35. W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012) 124008 [arXiv:1206.2560] [INSPIRE].

    ADS  Google Scholar 

  36. J. Lopez-Pavon, S. Pascoli and C.-f. Wong, Can heavy neutrinos dominate neutrinoless double beta decay?, arXiv:1209.5342 [INSPIRE].

  37. M. Mitra, G. Senjanović and F. Vissani, Heavy Sterile Neutrinos and Neutrinoless Double Beta Decay, arXiv:1205.3867 [INSPIRE].

  38. M. Mitra, G. Senjanović and F. Vissani, Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos, Nucl. Phys. B 856 (2012) 26 [arXiv:1108.0004] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Antusch, C. Biggio, E. Fernandez-Martinez, M. Gavela and J. Lopez-Pavon, Unitarity of the Leptonic Mixing Matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. Dinh, A. Ibarra, E. Molinaro and S. Petcov, The μe Conversion in Nuclei, μ, μ→3e Decays and TeV Scale See-Saw Scenarios of Neutrino Mass Generation, JHEP 08 (2012) 125 [arXiv:1205.4671] [INSPIRE].

    Article  ADS  Google Scholar 

  42. Particle Data Group , J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  43. NuTeV collaboration, G. Zeller, A Departure from prediction: Electroweak results from NuTeV, hep-ex/0207037 [INSPIRE].

  44. A. Ferroglia and A. Sirlin, Comparison of the Standard Theory Predictions of M W and Sin 2 \( \theta_{{ef\;f}}^{lept } \) with their Experimental Values, Phys. Rev. D 87 (2013) 037501 [arXiv:1211.1864] [INSPIRE].

    ADS  Google Scholar 

  45. W. Loinaz, N. Okamura, S. Rayyan, T. Takeuchi and L. Wijewardhana, The NuTeV anomaly, lepton universality and nonuniversal neutrino gauge couplings, Phys. Rev. D 70 (2004) 113004 [hep-ph/0403306] [INSPIRE].

    ADS  Google Scholar 

  46. W. Loinaz, N. Okamura, T. Takeuchi and L. Wijewardhana, The NuTeV anomaly, neutrino mixing and a heavy Higgs boson, Phys. Rev. D 67 (2003) 073012 [hep-ph/0210193] [INSPIRE].

    ADS  Google Scholar 

  47. T. Takeuchi and W. Loinaz, Phenomenology of not-so-heavy neutral leptons: The NuTeV anomaly, lepton universality and non-universal neutrino-gauge couplings, hep-ph/0410201 [INSPIRE].

  48. T. Cheng and L. Li, Gauge theory of elementary particle physics, Oxford University Press, Oxford U.K. (2002).

    Google Scholar 

  49. MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Ibarra, E. Molinaro and S. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ)0ν -Decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].

    Article  ADS  Google Scholar 

  51. EXO collaboration, M. Auger et al., Search for Neutrinoless Double-Beta Decay in 136 Xe with EXO-200, Phys. Rev. Lett. 109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Abada, D. Das, A. Teixeira, A. Vicente and C. Weiland, Tree-level lepton universality violation in the presence of sterile neutrinos: impact for R K and R π , JHEP 02 (2013) 048 [arXiv:1211.3052] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

    Article  ADS  Google Scholar 

  54. P. Fileviez Perez, T. Han and T. Li, Testability of Type I Seesaw at the CERN LHC: Revealing the Existence of the B-L Symmetry, Phys. Rev. D 80 (2009) 073015 [arXiv:0907.4186] [INSPIRE].

    ADS  Google Scholar 

  55. ALEPH, DELPHI, L3, OPAL collaboration, LEP Electroweak Working Group, SLD Heavy Flavor Group, A Combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0212036 [INSPIRE].

  56. L3 collaboration, P. Achard et al., Search for heavy isosinglet neutrino in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 67 [hep-ex/0107014] [INSPIRE].

    ADS  Google Scholar 

  57. CMS collaboration, Search for heavy Majorana neutrinos in μ + μ +[μ μ ] and e + e +[e e ] events in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 717 (2012) 109 [arXiv:1207.6079] [INSPIRE].

    ADS  Google Scholar 

  58. W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].

    Article  ADS  Google Scholar 

  59. J. Almeida, F.M.L., Y.D.A. Coutinho, J.A. Martins Simoes and M. do Vale, On a signature for heavy Majorana neutrinos in hadronic collisions, Phys. Rev. D 62 (2000) 075004 [hep-ph/0002024] [INSPIRE].

    ADS  Google Scholar 

  60. F. de Almeida, Y.D.A. Coutinho, J.A. Martins Simoes and M. do Vale, Heavy Majorana neutrinos at a very large electron proton collider, Phys. Rev. D 65 (2002) 115010 [INSPIRE].

    ADS  Google Scholar 

  61. P. Langacker and D. London, Lepton number violation and massless nonorthogonal neutrinos, Phys. Rev. D 38 (1988) 907 [INSPIRE].

    ADS  Google Scholar 

  62. S. Antusch, M. Blennow, E. Fernandez-Martinez and J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a Neutrino Factory, Phys. Rev. D 80 (2009) 033002 [arXiv:0903.3986] [INSPIRE].

    ADS  Google Scholar 

  63. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    ADS  Google Scholar 

  65. M. Traini, Charge symmetry violation: A NNLO study of partonic observables, Phys. Lett. B 707 (2012) 523 [arXiv:1110.3594] [INSPIRE].

    ADS  Google Scholar 

  66. NuTeV collaboration, G. Zeller et al., A Precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88 (2002) 091802 [Erratum ibid. 90 (2003) 239902] [hep-ex/0110059] [INSPIRE].

    Article  ADS  Google Scholar 

  67. NuTeV collaboration, G. Zeller et al., On the effect of asymmetric strange seas and isospin violating parton distribution functions on sin2 θ W measured in the NuTeV experiment, Phys. Rev. D 65 (2002) 111103 [Erratum ibid. D 67 (2003) 119902] [hep-ex/0203004] [INSPIRE].

    ADS  Google Scholar 

  68. K.S. McFarland, G. Zeller, T. Adams, A. Alton, S. Avvakumov et al., A Departure from prediction: Electroweak physics at NuTeV, hep-ex/0205080 [INSPIRE].

  69. NuTeV collaboration, G. Zeller et al., Reply to the comment onA Precise determination of electroweak parameters in neutrino nucleon scattering’, hep-ex/0207052 [INSPIRE].

  70. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  71. B.A. Kniehl and H.-G. Kohrs, Oblique radiative corrections from Majorana neutrinos, Phys. Rev. D 48 (1993) 225 [INSPIRE].

    ADS  Google Scholar 

  72. G. Passarino and M. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Casas and A. Ibarra, Oscillating neutrinos and μ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

    Article  ADS  Google Scholar 

  74. G. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  75. WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, arXiv:1212.5226 [INSPIRE].

  76. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].

    Article  ADS  Google Scholar 

  77. G. Mention, M. Fechner, T. Lasserre, T. Mueller, D. Lhuillier et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].

    ADS  Google Scholar 

  78. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  79. I. Maksymyk, C. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].

    ADS  Google Scholar 

  80. M. Plümacher, Baryon asymmetry, neutrino mixing and supersymmetric SO(10) unification, hep-ph/9807557 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Smirnov.

Additional information

ArXiv ePrint: 1302.1872

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhmedov, E., Kartavtsev, A., Lindner, M. et al. Improving electro-weak fits with TeV-scale sterile neutrinos. J. High Energ. Phys. 2013, 81 (2013). https://doi.org/10.1007/JHEP05(2013)081

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)081

Keywords

Navigation