Skip to main content
Log in

Half-hypers and quivers

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study systematically the BPS spectra of \(\mathcal{N} = 2\) SYM coupled to half - hypermultiplets, the basic example being E 7 SYM coupled to a half-hyper in the 56 irrepr. In order to do this, we determine the BPS quivers with superpotential of such \(\mathcal{N} = 2\) models using a new technique we introduce. The computation of the BPS spectra in the various chambers is then reduced to the Representation Theory of the resulting quivers. We use the quiver description to study the BPS spectrum at both strong and weak coupling. The following models are discussed in detail: SU(6) SYM coupled to a \(\frac{1}{2}\) 20, SO(12) SYM coupled to a \(\frac{1}{2}\) 32, and E 7 SYM coupled to a \(\frac{1}{2}\) 56. For models with gauge group SU(2) × SO(2n) and matter in the \(\frac{1}{2}\) (2, 2n) we find strongly coupled chambers with a BPS spectrum consisting of just finitely many hypermultiplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. Y. Tachikawa and S. Terashima, Seiberg-Witten geometries revisited, JHEP 09 (2011) 010 [arXiv:1108.2315] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].

  7. D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, arXiv:1006.0146 [INSPIRE].

  8. D. Gaiotto, G.W. Moore and A. Neitzke, Spectral networks, arXiv:1204.4824 [INSPIRE].

  9. S. Cecotti, C. Vafa and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4 dimensions, arXiv:1103.5832 [INSPIRE].

  10. M. Alim et al., BPS quivers and spectra of complete N = 2 quantum field theories, arXiv:1109.4941 [INSPIRE].

  11. M. Alim et al., N = 2 quantum field theories and their BPS quivers, arXiv:1112.3984 [INSPIRE].

  12. F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].

  15. D.-E. Diaconescu and J. Gomis, Fractional branes and boundary states in orbifold theories, JHEP 10 (2000) 001 [hep-th/9906242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M.R. Douglas, B. Fiol and C. Romelsberger, Stability and BPS branes, JHEP 09 (2005) 006 [hep-th/0002037] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M.R. Douglas, B. Fiol and C. Romelsberger, The spectrum of BPS branes on a noncompact Calabi-Yau, JHEP 09 (2005) 057 [hep-th/0003263] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. B. Fiol and M. Mariño, BPS states and algebras from quivers, JHEP 07 (2000) 031 [hep-th/0006189] [INSPIRE].

    Article  ADS  Google Scholar 

  19. B. Fiol, The BPS spectrum of N = 2 SU(N) SYM and parton branes, hep-th/0012079 [INSPIRE].

  20. F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. B. Feng, A. Hanany, Y.H. He and A. Iqbal, Quiver theories, soliton spectra and Picard-Lefschetz transformations, JHEP 02 (2003) 056 [hep-th/0206152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].

  25. S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  27. P.S. Aspinwall et al., Dirichlet branes and mirror symmetry, Clay mathematics monographs, volume 4, Clay Mathematics Institute, American Mathematical Society, Providence U.S.A. (2009).

    Google Scholar 

  28. S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4d/2d correspondences, arXiv:1006.3435 [INSPIRE].

  29. S. Cecotti, Categorical tinkertoys for N = 2 gauge theories, arXiv:1203.6743.

  30. S. Cecotti and C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. S. Cecotti and M. Del Zotto, On Arnolds 14 ‘exceptional\(\mathcal{N} = 2\) superconformal gauge theories, JHEP 10 (2011) 099 [arXiv:1107.5747] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Del Zotto, More Arnolds \(\mathcal{N} = 2\) superconformal gauge theories, JHEP 11 (2011) 115 [arXiv:1110.3826] [INSPIRE].

    Article  ADS  Google Scholar 

  33. D. Xie, General Argyres-Douglas theory, arXiv:1204.2270 [INSPIRE].

  34. N. Seiberg, Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. H. Derksen, J. Wyman and A. Zelevinsky, Quivers with potentials and their representations I: mutations, Selecta Math. 14 (2008) 59 [arXiv:0704.0649].

    Article  MathSciNet  MATH  Google Scholar 

  36. A.D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford 45 (1994) 515.

    Article  MATH  Google Scholar 

  37. B. Keller, On cluster theory and quantum dilogarithm identities, arXiv:1102.4148.

  38. S. Fomin, M. Shapiro and D. Thurston, Cluster algebras and triangulated surfaces. Part I: cluster complexes, Acta Math. 201 (2006) 83 [math.RA/0608367].

    Article  MathSciNet  Google Scholar 

  39. A. Felikson, M. Shapiro and P. Tumarkin, Skew-symmetric cluster algebras of finite mutation type, arXiv:0811.1703.

  40. H. Derksen and T. Owen, New graphs of finite mutation type, arXiv:0804.0787.

  41. S. Ladkani, Mutation classes of certain quivers with potentials as derived equivalence classes, arXiv:1102.4108.

  42. S. Ladkani, Which mutation classes of quivers have constant number of arrows?, arXiv:1104.0436.

  43. I. Assem, T. Brüstle, G. Charbonneau-Jodoin and P.-G. Plamondon, Gentle algebras arising from surface triangulations, arXiv:0805.1035.

  44. A.D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hep-th/9910182 [INSPIRE].

  45. I.M. Gelfand and V.A. Ponomarev, Model algebras and representations of graphs, Funct. Anal. Appl. 13 (1979) 157 [Funkt. Anal. Prilozhen. 13 (1979) 1].

    MathSciNet  Google Scholar 

  46. C.M. Ringel, The preprojective algebra of a quiver, in Algebras and modules, II, Geiranger Norway (1996), CMS Conf. Proc. 24, American Mathematical Society, Providence U.S.A. (1998), pg. 467.

    Google Scholar 

  47. W. Crawley-Boevey, On the exceptional fibres of Kleinian singularities, Amer. J. Math. 122 (2000) 1027.

    Article  MathSciNet  MATH  Google Scholar 

  48. C. Geiss, B. Leclerc and J. Schröer, Kac-Moody groups and cluster algebras, Adv. Math. 228 (2011) 329 [arXiv:1001.3545].

    Article  MathSciNet  MATH  Google Scholar 

  49. W. Crawley-Boevey and M.P. Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J. 92 (1998) 605.

    Article  MathSciNet  MATH  Google Scholar 

  50. W. Crawley-Boevey, Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities, Comment. Math. Helv. 74 (1999) 548.

    Article  MathSciNet  MATH  Google Scholar 

  51. W. Crawley-Boevey, Geometry of the momentum map for representations of quivers, Compositio Math. 126 (2001) 257.

    Article  MathSciNet  MATH  Google Scholar 

  52. W. Rump, Doubling a path algebra, or: how to extend indecomposable modules to simple modules, Ann. St. Ovidius Constance 4 (1996) 174.

    MathSciNet  MATH  Google Scholar 

  53. B. Keller, Cluster algebras and derived categories, arXiv:1202.4161.

  54. B. Keller, Quiver mutation in Java, available from the author’s homepage http://www.institut.math.jussieu.fr/~keller/quivermutation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Del Zotto.

Additional information

ArXiv ePrint: 1207.2275

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecotti, S., Del Zotto, M. Half-hypers and quivers. J. High Energ. Phys. 2012, 135 (2012). https://doi.org/10.1007/JHEP09(2012)135

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)135

Keywords

Navigation