Skip to main content
Log in

On Arnold’s 14 ‘exceptional’ \( \mathcal{N} = 2 \) superconformal gauge theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the four-dimensional superconformal \( \mathcal{N} = 2 \) gauge theories engineered by the Type IIB superstring on Arnold’s 14 exceptional unimodal singularities (a.k.a. Arnold’s strange duality list), thus extending the methods of arXiv:1006.3435 to singularities which are not the direct sum of minimal ones. In particular, we compute their BPS spectra in several ‘strongly coupled’ chambers.

From the TBA side, we construct ten new periodic Y-systems, providing additional evidence for the existence of a periodic Y-system for each isolated quasi-homogeneous singularity with ĉ < 2 (more generally, for each \( \mathcal{N} = 2 \) superconformal theory with a finite BPS chamber whose chiral primaries have dimensions of the form \( {{\mathbb{N}} \left/ {\ell } \right.} \)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [hep-th/9407087] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [ inSPIRE].

  5. D. Gaiotto, N =2 dualities, arXiv:0904.2715 [ inSPIRE].

  6. M.R. Douglas, B. Fiol and C. Romelsberger, Stability and BPS branes, JHEP 09 (2005) 006 [hep-th/0002037] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M.R. Douglas, B. Fiol and C. Romelsberger, The spectrum of BPS branes on a noncompact Calabi-Yau, JHEP 09 (2005) 057 [hep-th/0003263] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. B. Fiol and M. Mariño, BPS states and algebras from quivers, JHEP 07 (2000) 031 [hep-th/0006189] [ inSPIRE].

    Article  ADS  Google Scholar 

  9. W. Lerche, On a boundary CFT description of nonperturbative N =2 Yang-Mills theory, [hep-th/0006189] [ inSPIRE].

  10. B. Fiol, The BPS spectrum of N = 2 SU(N) SYM and parton branes, hep-th/0012079 [ inSPIRE].

  11. F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4d/2d correspondences, arXiv:1006.3435 [ inSPIRE].

  13. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.

  14. T. Dimofte and S. Gukov, Refined, motivic and quantum, Lett. Math. Phys. 91 (2010) 1 [arXiv:0904.1420] [ inSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Dimofte, S. Gukov and Y. Soibelman, Quantum wall crossing in N =2 gauge theories, Lett. Math. Phys. 95 (2011) 1 [arXiv:0912.1346] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. Cecotti and C. Vafa, BPS wall crossing and topological strings, arXiv:0910.2615 [ inSPIRE].

  17. S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002) 497 [math/0104151].

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Fomin and A. Zelevinsky, Cluster algebras. II. Finite type classification, Inv. Math. 154 (2003) 63 [math/0208229].

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Fomin and A. Zelevinsky, Cluster algebras IV: coefficients, math/0602259.

  20. S. Fomin and N. Reading, Root systems and generalized associahedra, in Geometric combinatorics, E. Miller et al. eds., American Mathematical Society, U.S.A. (2007), math/0505518.

  21. S. Fomin and A. Zelevinsky, Cluster algebras: notes for the CDM-03 conference, in Current developments in mathematics 2003, B. Mazur et al. eds., International Press, U.S.A. (2003).

  22. B. Keller, Cluster algebras, quiver representations and triangulated categories, arXiv:0807.1960.

  23. V.V. Fock and A.B. Goncharov, The quantum dilogarithm and representations of quantum cluster varieties, Inv. Math. 175 (2008) 223 [math/0702397].

    Article  MathSciNet  ADS  Google Scholar 

  24. V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm II: the intertwiner, math/0702398.

  25. A.B. Goncharov, A proof of the pentagon relation for the quantum dilogarithm, arXiv:0706.4054.

  26. A.D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hep-th/9910182 [ inSPIRE].

  27. S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [hep-th/9906070] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. E.J. Martinec, Algebraic geometry and effective lagrangians, Phys. Lett. B 217 (1989) 431 [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. C. Vafa and N.P. Warner, Catastrophes and the classification of con formal theories, Phys. Lett. B 43 (1989) 730.

    MathSciNet  Google Scholar 

  30. W. Lerche, C. Vafa and N.P. Warner, Chiral rings in N =2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Cecotti and C. Vafa, On classification of N =2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [ inSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. V.I. Arnold, S. Gusejn-Zade and A. Varchenko, Singularities of differentiable maps, Springer, U.S.A. (1985).

    Book  MATH  Google Scholar 

  33. W. Ebeling, Functions of several complex variables and their singularities, American Mathematical Society, U.S.A. (2007).

    MATH  Google Scholar 

  34. S. Cecotti and C. Vafa, Classification of complete N =2 supersymmetric theories in 4 dimensions, arXiv:1103.5832 [ inSPIRE].

  35. H. Lenzing and J.A. dela Peña, Extended canonical algebras and Fuchsian singularities, math/0611532.

  36. H. Lenzing and J.A. dela Pena, Spectral analysis of finite dimensional algebras and singularities, arXiv:0805.1018.

  37. H. Lenzing, Rings of singularities, lecture given at the Advanced school and conference on homological and geometrical methods in representation theory, January 18–February 5, ICTP, Trieste, (2010), http://www.math.jussieu.fr/˜keller/ictp2010/slides/lenzing.pdf.

  38. A. Skowronski, Periodicity in representations theory of algebras, lecture given at the ICTP advanced school and conference on representation theory and related topics, January 9–27, ICTP, Trieste (2006), http://www.math.jussieu.fr/˜keller/ictp2006/lecturenotes/skowronski.pdf.

  39. B. Keller, The periodicity conjecture for pairs of Dynkin diagrams, arXiv:1001.1531.

  40. A.B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories, Phys. Lett. B 253 (1991) 391 [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. J. Milnor, Singular points of complex hypersurfaces, Princeton University Press, Princeton U.S.A. (1968).

    MATH  Google Scholar 

  42. V.G. Kac, Infinite dimensional Lie algebras,3rd edition, Cambridge University press, Cmbridge U.K. (1990).

    Book  Google Scholar 

  43. F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz and C. Vafa, A geometric unification of dualities, Nucl. Phys. B 628 (2002) 3 [hep-th/0110028] [ inSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-th/0005247 [ inSPIRE].

  45. C.M. Ringel, Tame algebras and integral quadratic forms, Springer U.S.A. (1984).

  46. P. Gabriel and A.V. Roiter, Representations of finite-dimensional algebras, in Encyclopaedia of Mathematical Sciences. Algebra VIII, A.I. Kostrikin and I.R. Shafarevich eds., Springer, U.S.A. (1991).

  47. M. Auslander, I. Reiten and S.O. Smalo, Representation theory for Artin algebras, Cambridge University Press, Camrbidge U.K. (1995).

    Book  Google Scholar 

  48. I. Assem, D. Simson and A. Skowronski, Elements of the representation theory of associative algebras. Volume 1. Techniques of representation theory, Cambridge University Press, Cambridge U.K. (2006).

    Book  MATH  Google Scholar 

  49. B. Keller, Deformed Calabi-Yau completions, arXiv:0908.3499.

  50. B. Keller, Quiver mutation in Java, available from the author’s homepage http://www.institut.math.jussieu.fr/˜keller/quivermutation

  51. W. Ebeling, On Coxeter-Dynkin diagrams of hypersurface singularities, J. Math. Sciences 82 (1996) 3657.

    Article  MathSciNet  MATH  Google Scholar 

  52. V. Kac, Infinite root systems, representations of graphs, and invariant theory, Inv. Math. 56 (1980) 57.

    Article  ADS  MATH  Google Scholar 

  53. V. Kac, Infinite root systems, representations of graphs, and invariant theory. II, J. Algebra 78 (1982) 141.

    Article  MathSciNet  MATH  Google Scholar 

  54. V. Kac, Root systems, representations of quivers and invariant theory, Springer, U.S.A. (1983).

    Google Scholar 

  55. D. Simson and A. Skowronski, Elements of the representation theory of associative algebras. Volume 2: tubes and concealed algebras of euclidean type, Cambridge University Press, Camrbidge U.K. (2007).

    Google Scholar 

  56. R. Stekolshchik, Notes on the Coxter transformations and the McKay correspondence, Springer, U.S.A. (2008).

    Google Scholar 

  57. W. Crawley-Boevey, Lectures on representations of quivers, available from author’s web-page www.amsta.lead.ac.uk/˜pmtwc/quivlecs.pdf.

  58. H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations I: mutations, arXiv:0704.0649.

  59. A. Zelevinsky, Mutations for quivers with potentials: Oberwolfach talk, April 2007, arXiv:0706.0822.

  60. H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010) 749 [arXiv:0904.0676].

    Article  MathSciNet  MATH  Google Scholar 

  61. B. Keller, On cluster theory and quantum dilogarithm identities, arXiv:1102.4148.

  62. I.N. Bernstein, I.M. Gelfand and V.A. Ponomariev, Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk. 28 (1973) 19 [Russian Math. Surveys 28 (1973) 17].

    Article  ADS  MATH  Google Scholar 

  63. F. Ravanini, R. Tateo and A. Valleriani, Dynkin TBAs, Int. J. Mod. Phys. A8 (1993) 1707 [hep-th/9207040] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  64. A. Kuniba, T. Nakanishi and J. Suzuki, Functional relations in solvable lattice models. 1: functional relations and representation theory, Int. J. Mod. Phys. A9 (1994) 5215 [hep-th/9309137] [ inSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. I.V. Dolgachev and V.A. Iskovskikh, Finite subgroups of the plane Cremona group, in Algebra, arithmetic and geometry: in honor of Yu.I. Manin, volume I, Y. Tschinkel and Y.G. Zarhin eds., Springer, U.S.A. (2009).

    Google Scholar 

  66. S. Fomin, Cluster algebras, lectures given at Aarhus University, June14–18, Aarhus, Denmark (2010), video available from http://qgm.au.dk/video/clusalg/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Del Zotto.

Additional information

ArXiv ePrint: 1107.5747

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecotti, S., Del Zotto, M. On Arnold’s 14 ‘exceptional’ \( \mathcal{N} = 2 \) superconformal gauge theories. J. High Energ. Phys. 2011, 99 (2011). https://doi.org/10.1007/JHEP10(2011)099

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)099

Keywords

Navigation