Skip to main content
Log in

Bubble baryogenesis

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose an alternative mechanism of baryogenesis in which a scalar baryon undergoes a percolating first-order phase transition in the early Universe. The potential barrier that divides the phases contains explicit B and CP violation and the corresponding instanton that mediates decay is therefore asymmetric. The nucleation and growth of these asymmetric bubbles dynamically generates baryons, which thermalize after percolation; bubble collision dynamics can also add to the asymmetry yield. We present an explicit toy model that undergoes bubble baryogenesis, and numerically study the evolution of the baryon asymmetry through bubble nucleation and growth, bubble collisions, and washout. We discuss more realistic constructions, in which the scalar baryon and its potential arise amongst the color-breaking minima of the MSSM, or in the supersymmetric neutrino seesaw mechanism. Phenomenological consequences, such as gravitational waves, and possible applications to asymmetric dark-matter generation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.W. Kolb and M.S. Turner, The early universe, Addison-Wesley, Reading U.S.A. (1990).

    MATH  Google Scholar 

  2. E.W. Kolb and M.S. Turner, Grand Unified Theories and the origin of the baryon asymmetry, Ann. Rev. Nucl. Part. Sci. 33 (1983) 645 [INSPIRE].

    Article  ADS  Google Scholar 

  3. V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  5. I. Affleck and M. Dine, A new mechanism for baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Dine and A. Kusenko, The origin of the matter-antimatter asymmetry, Rev. Mod. Phys. 76 (2003) 1 [hep-ph/0303065] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S. Coleman, Fate of the false vacuum: semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

    ADS  Google Scholar 

  8. M. Dine, L. Randall and S.D. Thomas, Supersymmetry breaking in the early universe, Phys. Rev. Lett. 75 (1995) 398 [hep-ph/9503303] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. G.W. Anderson and L.J. Hall, Electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [INSPIRE].

    ADS  Google Scholar 

  11. A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, JETP Lett. 5 (1967) 24 [Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32] [Sov. Phys. Usp. 34 (1991)392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

    ADS  Google Scholar 

  12. A.D. Linde, Fate of the false vacuum at finite temperature: theory and applications, Phys. Lett. B 100 (1981) 37 [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Basu and A. Vilenkin, Evolution of topological defects during inflation, Phys. Rev. D 50 (1994) 7150 [gr-qc/9402040] [INSPIRE].

    ADS  Google Scholar 

  14. I. Dymnikova, L. Koziel, M. Khlopov and S. Rubin, Quasilumps from first order phase transitions, Grav. Cosmol. 6 (2000) 311 [hep-th/0010120] [INSPIRE].

    ADS  MATH  Google Scholar 

  15. M.C. Johnson, H.V. Peiris and L. Lehner, Determining the outcome of cosmic bubble collisions in full general relativity, Phys. Rev. D 85 (2012) 083516 [arXiv:1112.4487] [INSPIRE].

    ADS  Google Scholar 

  16. S.R. Coleman, Q balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. B 269 (1986) 744] [INSPIRE].

    Article  ADS  Google Scholar 

  17. T. Lee and Y. Pang, Nontopological solitons, Phys. Rept. 221 (1992) 251 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Segur and M. Kruskal, Nonexistence of small amplitude breather solutions in φ4 theory, Phys. Rev. Lett. 58 (1987) 747 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.W. Hawking, I.G. Moss and J.M. Stewart, Bubble collisions in the very early universe, Phys. Rev. D 26 (1982) 2681 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. J.T. Giblin jr., L. Hui, E.A. Lim and I.-S. Yang, How to run through walls: dynamics of bubble and soliton collisions, Phys. Rev. D 82 (2010) 045019 [arXiv:1005.3493] [INSPIRE].

    ADS  Google Scholar 

  21. S. Matsumoto and T. Moroi, Decay of scalar condensation in quantum field theory, Phys. Rev. D 77 (2008) 045014 [arXiv:0709.4338] [INSPIRE].

    ADS  Google Scholar 

  22. C.G. Callan and S. Coleman, Fate of the false vacuum. II. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

    ADS  Google Scholar 

  23. U. Seljak, A. Slosar and P. McDonald, Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints, JCAP 10 (2006) 014 [astro-ph/0604335] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Abel and C.A. Savoy, Charge and color breaking constraints in the MSSM with nonuniversal SUSY breaking, Phys. Lett. B 444 (1998) 119 [hep-ph/9809498] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Allahverdi, K. Enqvist, J. García-Bellido and A. Mazumdar, Gauge invariant MSSM inflaton, Phys. Rev. Lett. 97 (2006) 191304 [hep-ph/0605035] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Allahverdi, A. Kusenko and A. Mazumdar, A-term inflation and the smallness of neutrino masses, JCAP 07 (2007) 018 [hep-ph/0608138] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Allahverdi, K. Enqvist, J. García-Bellido, A. Jokinen and A. Mazumdar, MSSM flat direction inflation: slow roll, stability, fine tunning and reheating, JCAP 06 (2007) 019 [hep-ph/0610134] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M.S. Turner, E.J. Weinberg and L.M. Widrow, Bubble nucleation in first order inflation and other cosmological phase transitions, Phys. Rev. D 46 (1992) 2384 [INSPIRE].

    ADS  Google Scholar 

  29. D. La and P.J. Steinhardt, Extended inflationary cosmology, Phys. Rev. Lett. 62 (1989) 376 [Erratum ibid. 62 (1989) 1066] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Kosowsky, M.S. Turner and R. Watkins, Gravitational radiation from colliding vacuum bubbles, Phys. Rev. D 45 (1992) 4514 [INSPIRE].

    ADS  Google Scholar 

  31. V. Ramamurthy et al., Entrance-channel dependence of fission-fragment anisotropies: a direct experimental signature of fission before equilibration, Phys. Rev. Lett. 65 (1990) 25 [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Volonteri, F. Haardt and P. Madau, The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation, Astrophys. J. 582 (2003) 559 [astro-ph/0207276] [INSPIRE].

    Article  ADS  Google Scholar 

  33. E. Farhi et al., Emergence of oscillons in an expanding background, Phys. Rev. D 77 (2008) 085019 [arXiv:0712.3034] [INSPIRE].

    ADS  Google Scholar 

  34. M.A. Amin and D. Shirokoff, Flat-top oscillons in an expanding universe, Phys. Rev. D 81 (2010) 085045 [arXiv:1002.3380] [INSPIRE].

    ADS  Google Scholar 

  35. M.A. Amin, R. Easther, H. Finkel, R. Flauger and M.P. Hertzberg, Oscillons after inflation, Phys. Rev. Lett. 108 (2012) 241302 [arXiv:1106.3335] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A.G. Cohen, S.R. Coleman, H. Georgi and A. Manohar, The evaporation of Q balls, Nucl. Phys. B 272 (1986) 301 [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Kusenko and M.E. Shaposhnikov, Supersymmetric Q balls as dark matter, Phys. Lett. B 418 (1998) 46 [hep-ph/9709492] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Kasuya and M. Kawasaki, Q ball formation: obstacle to Affleck-Dine baryogenesis in the gauge mediated SUSY breaking?, Phys. Rev. D 64 (2001) 123515 [hep-ph/0106119] [INSPIRE].

    ADS  Google Scholar 

  39. F. Doddato and J. McDonald, Affleck-Dine baryogenesis, condensate fragmentation and gravitino dark matter in gauge-mediation with a large messenger mass, JCAP 06 (2011) 008 [arXiv:1101.5328] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Kasuya and M. Kawasaki, Q ball formation in the gravity mediated SUSY breaking scenario, Phys. Rev. D 62 (2000) 023512 [hep-ph/0002285] [INSPIRE].

    ADS  Google Scholar 

  41. K. Enqvist and A. Mazumdar, Cosmological consequences of MSSM flat directions, Phys. Rept. 380 (2003) 99 [hep-ph/0209244] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. A.R. Brown, Boom and bust inflation: a graceful exit via compact extra dimensions, Phys. Rev. Lett. 101 (2008) 221302 [arXiv:0807.0457] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    ADS  Google Scholar 

  44. S.D. Thomas, Baryons and dark matter from the late decay of a supersymmetric condensate, Phys. Lett. B 356 (1995) 256 [hep-ph/9506274] [INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].

    ADS  Google Scholar 

  46. N. Cosme, L. Lopez Honorez and M.H. Tytgat, Leptogenesis and dark matter related?, Phys. Rev. D 72 (2005) 043505 [hep-ph/0506320] [INSPIRE].

    ADS  Google Scholar 

  47. R. Kitano, H. Murayama and M. Ratz, Unified origin of baryons and dark matter, Phys. Lett. B 669 (2008) 145 [arXiv:0807.4313] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [INSPIRE].

    Article  ADS  Google Scholar 

  49. H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a common origin for matter and dark matter, JHEP 03 (2010) 124 [arXiv:0911.4463] [INSPIRE].

    Article  ADS  Google Scholar 

  50. H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].

    Article  ADS  Google Scholar 

  51. E.J. Chun, Minimal dark matter and leptogenesis, JHEP 03 (2011) 098 [arXiv:1102.3455] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].

    Article  ADS  Google Scholar 

  53. J. Shelton and K.M. Zurek, Darkogenesis: a baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [INSPIRE].

    ADS  Google Scholar 

  54. T. Cohen and K.M. Zurek, Leptophilic dark matter from the lepton asymmetry, Phys. Rev. 104 (2010) 101301 [arXiv:0909.2035] [INSPIRE].

    Google Scholar 

  55. Y. Cai, M.A. Luty and D.E. Kaplan, Leptonic indirect detection signals from strongly interacting asymmetric dark matter, arXiv:0909.5499 [INSPIRE].

  56. T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric dark matter from a GeV hidden sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].

    ADS  Google Scholar 

  57. M.R. Buckley and L. Randall, Xogenesis, JHEP 09 (2011) 009 [arXiv:1009.0270] [INSPIRE].

    Article  ADS  Google Scholar 

  58. N. Haba, S. Matsumoto and R. Sato, Sneutrino inflation with asymmetric dark matter, Phys. Rev. D 84 (2011) 055016 [arXiv:1101.5679] [INSPIRE].

    ADS  Google Scholar 

  59. M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S.D. McDermott, H.-B. Yu and K.M. Zurek, Constraints on scalar asymmetric dark matter from black hole formation in neutron stars, Phys. Rev. D 85 (2012) 023519 [arXiv:1103.5472] [INSPIRE].

    ADS  Google Scholar 

  61. J.J. Heckman and S.-J. Rey, Baryon and dark matter genesis from strongly coupled strings, JHEP 06 (2011) 120 [arXiv:1102.5346] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J. McDonald, Baryomorphosis: relating the baryon asymmetry to theWIMP miracle’, Phys. Rev. D 83 (2011) 083509 [arXiv:1009.3227] [INSPIRE].

    ADS  Google Scholar 

  63. T. Chiba, F. Takahashi and M. Yamaguchi, Baryogenesis in a flat direction with neither baryon nor lepton charge, Phys. Rev. Lett. 92 (2004) 011301 [hep-ph/0304102] [INSPIRE].

    Article  ADS  Google Scholar 

  64. F. Takahashi and M. Yamaguchi, Spontaneous baryogenesis in flat directions, Phys. Rev. D 69 (2004) 083506 [hep-ph/0308173] [INSPIRE].

    ADS  Google Scholar 

  65. N.F. Bell, K. Petraki, I.M. Shoemaker and R.R. Volkas, Pangenesis in a baryon-symmetric universe: dark and visible matter via the Affleck-Dine mechanism, Phys. Rev. D 84 (2011) 123505 [arXiv:1105.3730] [INSPIRE].

    ADS  Google Scholar 

  66. C. Cheung and K.M. Zurek, Affleck-Dine cogenesis, Phys. Rev. D 84 (2011) 035007 [arXiv:1105.4612] [INSPIRE].

    ADS  Google Scholar 

  67. J. McDonald, Right-handed sneutrino condensate cold dark matter and the baryon-to-dark matter ratio, JCAP 01 (2007) 001 [hep-ph/0609126] [INSPIRE].

    Article  ADS  Google Scholar 

  68. D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Ωb /ΩDM puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [INSPIRE].

    Article  ADS  Google Scholar 

  69. M. Fujii and T. Yanagida, A solution to the coincidence puzzle of Ωb and ΩDM, Phys. Lett. B 542 (2002) 80 [hep-ph/0206066] [INSPIRE].

    Article  ADS  Google Scholar 

  70. K. Enqvist and J. McDonald, B-ball baryogenesis and the baryon to dark matter ratio, Nucl. Phys. B 538 (1999) 321 [hep-ph/9803380] [INSPIRE].

    Article  ADS  Google Scholar 

  71. L. Roszkowski and O. Seto, Axino dark matter from Q-balls in Affleck-Dine baryogenesis and the Ωb -ΩDM coincidence problem, Phys. Rev. Lett. 98 (2007) 161304 [hep-ph/0608013] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M.T. Frandsen, S. Sarkar and K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, Phys. Rev. D 84 (2011) 051703 [arXiv:1103.4350] [INSPIRE].

    ADS  Google Scholar 

  73. A. Belyaev, M.T. Frandsen, S. Sarkar and F. Sannino, Mixed dark matter from technicolor, Phys. Rev. D 83 (2011) 015007 [arXiv:1007.4839] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford Cheung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, C., Dahlen, A. & Elor, G. Bubble baryogenesis. J. High Energ. Phys. 2012, 73 (2012). https://doi.org/10.1007/JHEP09(2012)073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)073

Keywords

Navigation