Skip to main content
Log in

Leptogenesis as a common origin for matter and dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a model of asymmetric dark matter (DM) where the dark sector is an identical copy of both forces and matter of the standard model (SM) as in the mirror universe models discussed in literature. In addition to being connected by gravity, the SM and DM sectors are also connected at high temperature by a common set of heavy right-handed Majorana neutrinos via their Yukawa couplings to leptons and Higgs bosons. The lightest nucleon in the dark (mirror) sector is a candidate for dark matter. The out of equilibrium decay of right-handed neutrino produces equal lepton asymmetry in both sectors via resonant leptogenesis which then get converted to baryonic and dark baryonic matter. The dark baryon asymmetry due to higher dark nucleon masses leads to higher dark matter density compared to the familiar baryon density that is observed. The standard model neutrinos in this case acquire masses from the inverse seesaw mechanism. A kinetic mixing between the U(1) gauge fields of the two sectors is introduced to guarantee the success of Big-Bang Nucleosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [SPIRES].

    Google Scholar 

  2. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  3. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  4. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P. van Nieuwenhuizen eds., North-Holland, Amsterdam The Netherlands (1979) [SPIRES].

    Google Scholar 

  5. T. Yanagida, Horizontal symmetry and masses of neutrinos, in proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, Tsukuba Japan February 13–14 1979, O. Sawada and A. Sugamoto eds. (1979) [SPIRES].

  6. S.L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons, Plenum Press, New York U.S.A. (1980).

    Google Scholar 

  7. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  8. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [SPIRES].

    ADS  Google Scholar 

  9. T.D. Lee and C.-N. Yang, Question of parity conservation in weak interactions, Phys. Rev. 104 (1956) 254 [SPIRES].

    Article  ADS  Google Scholar 

  10. K. Nishijima, private communication.

  11. Y. Kobzarev, L. Okun and I.Y. Pomeranchuk, On the possibility of observing mirror particles (in Russian), Yad. Fiz. 3 (1966) 1154 [Sov. J. Nucl. Phys. 3 (1966) 837].

    Google Scholar 

  12. M. Pavsic, External inversion, internal inversion and reflection invariance, Int. J. Theor. Phys. 9 (1974) 229 [hep-ph/0105344] [SPIRES].

    Article  Google Scholar 

  13. S.I. Blinnikov and M.Y. Khlopov, Possible astronomical effects of mirror particles, Sov. Astron. 27 (1983) 371 [Astron. Zh. 60 (1983) 632] [SPIRES].

    ADS  Google Scholar 

  14. R. Foot, H. Lew and R.R. Volkas, A model with fundamental improper space-time symmetries, Phys. Lett. B 272 (1991) 67 [SPIRES].

    ADS  Google Scholar 

  15. R. Foot, H. Lew and R.R. Volkas, Possible consequences of parity conservation, Mod. Phys. Lett. A 7 (1992) 2567 [SPIRES].

    ADS  Google Scholar 

  16. R. Foot and R.R. Volkas, Neutrino physics and the mirror world: how exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment, Phys. Rev. D 52 (1995) 6595 [hep-ph/9505359] [SPIRES].

    ADS  Google Scholar 

  17. Z.G. Berezhiani and R.N. Mohapatra, Reconciling present neutrino puzzles: sterile neutrinos as mirror neutrinos, Phys. Rev. D 52 (1995) 6607 [hep-ph/9505385] [SPIRES].

    ADS  Google Scholar 

  18. Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. Z. Silagadze, Neutrino mass and mirror universe, Phys. Atom. Nucl. 60 (1997) 272 [Yad. Fiz. 60N2 (1997) 336] [hep-ph/9503481] [SPIRES].

    ADS  Google Scholar 

  20. L.B. Okun, Mirror particles and mirror matter: 50 years of speculations and search, Phys. Usp. 50 (2007) 380 [hep-ph/0606202] [SPIRES].

    Article  ADS  Google Scholar 

  21. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Ann. Phys. 315 (2005) 305 [hep-ph/0401240] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  22. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [SPIRES].

    ADS  Google Scholar 

  23. M. Flanz, E.A. Paschos, U. Sarkar and J. Weiss, Baryogenesis through mixing of heavy Majorana neutrinos, Phys. Lett. B 389 (1996) 693 [hep-ph/9607310] [SPIRES].

    ADS  Google Scholar 

  24. A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [SPIRES].

    Article  ADS  Google Scholar 

  25. A. Pilaftsis and T.E.J. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [SPIRES].

    ADS  Google Scholar 

  26. S. Nussinov, Technocosmology: could a technibaryon excess provide a ’natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [SPIRES].

    ADS  Google Scholar 

  27. S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [SPIRES].

    ADS  Google Scholar 

  28. D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [SPIRES].

    Article  ADS  Google Scholar 

  29. S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [SPIRES].

    ADS  Google Scholar 

  30. S. Dodelson, B.R. Greene and L.M. Widrow, Baryogenesis, dark matter and the width of the Z, Nucl. Phys. B 372 (1992) 467 [SPIRES].

    Article  ADS  Google Scholar 

  31. V.A. Kuzmin, Simultaneous solution to baryogenesis and dark-matter problems, Phys. Part. Nucl. 29 (1998) 257 [hep-ph/9701269] [SPIRES].

    Article  Google Scholar 

  32. R.N. Mohapatra, S. Nussinov and V.L. Teplitz, Mirror matter as self interacting dark matter, Phys. Rev. D 66 (2002) 063002 [hep-ph/0111381] [SPIRES].

    ADS  Google Scholar 

  33. M. Fujii and T. Yanagida, A solution to the coincidence puzzle of Ω B and ΩDM, Phys. Lett. B 542 (2002) 80 [hep-ph/0206066] [SPIRES].

    ADS  Google Scholar 

  34. R. Foot, Mirror matter-type dark matter, Int. J. Mod. Phys. D 13 (2004) 2161 [astro-ph/0407623] [SPIRES].

    ADS  Google Scholar 

  35. D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Ω B /ΩDM puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [SPIRES].

    ADS  Google Scholar 

  36. G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [SPIRES].

    Article  ADS  Google Scholar 

  37. S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [SPIRES].

    ADS  Google Scholar 

  38. R. Kitano, H. Murayama and M. Ratz, Unified origin of baryons and dark matter, Phys. Lett. B 669 (2008) 145 [arXiv:0807.4313] [SPIRES].

    ADS  Google Scholar 

  39. L. Roszkowski and O. Seto, Axino dark matter from Q-balls in Affleck-Dine baryogenesis and the Ω B -ΩDM coincidence problem, Phys. Rev. Lett. 98 (2007) 161304 [hep-ph/0608013] [SPIRES].

    Article  ADS  Google Scholar 

  40. O. Seto and M. Yamaguchi, Axino warm dark matter and Ω B -ΩDM coincidence, Phys. Rev. D 75 (2007) 123506 [arXiv:0704.0510] [SPIRES].

    ADS  Google Scholar 

  41. N. Sahu and U. Sarkar, Extended Zee model for neutrino mass, leptogenesis and sterile neutrino like dark matter, Phys. Rev. D 78 (2008) 115013 [arXiv:0804.2072] [SPIRES].

    ADS  Google Scholar 

  42. K. Kohri, A. Mazumdar and N. Sahu, Inflation, baryogenesis and gravitino dark matter at ultra low reheat temperatures, Phys. Rev. D 80 (2009) 103504 [arXiv:0905.1625] [SPIRES].

    ADS  Google Scholar 

  43. P.-H. Gu, U. Sarkar and X. Zhang, Visible and dark matter genesis and cosmic positron/electron excesses, Phys. Rev. D 80 (2009) 076003 [arXiv:0906.3103] [SPIRES].

    ADS  Google Scholar 

  44. K. Kohri, A. Mazumdar, N. Sahu and P. Stephens, Probing unified origin of dark matter and baryon asymmetry at PAMELA/Fermi, Phys. Rev. D 80 (2009) 061302 [arXiv:0907.0622] [SPIRES].

    ADS  Google Scholar 

  45. P.-H. Gu and U. Sarkar, Common origin of visible and dark universe, Phys. Rev. D 81 (2010) 033001 [arXiv:0909.5463] [SPIRES].

    ADS  Google Scholar 

  46. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [SPIRES].

    ADS  Google Scholar 

  47. D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic dark matter, arXiv:0909.0753 [SPIRES].

  48. G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky composite dark matter, arXiv:0909.2034 [SPIRES].

  49. H.M. Hodges, Mirror baryons as the dark matter, Phys. Rev. D 47 (1993) 456 [SPIRES].

    ADS  Google Scholar 

  50. R.N. Mohapatra and V.L. Teplitz, Mirror matter MACHOs, Phys. Lett. B 462 (1999) 302 [astro-ph/9902085] [SPIRES].

    ADS  Google Scholar 

  51. R.N. Mohapatra and V.L. Teplitz, Mirror dark matter and galaxy core densities, Phys. Rev. D 62 (2000) 063506 [astro-ph/0001362] [SPIRES].

    ADS  Google Scholar 

  52. Z. Berezhiani, D. Comelli and F.L. Villante, The early mirror universe: inflation, baryogenesis, nucleosynthesis and dark matter, Phys. Lett. B 503 (2001) 362 [hep-ph/0008105] [SPIRES].

    ADS  Google Scholar 

  53. R.N. Mohapatra, S. Nussinov and V.L. Teplitz, Mirror matter as self interacting dark matter, Phys. Rev. D 66 (2002) 063002 [hep-ph/0111381] [SPIRES].

    ADS  Google Scholar 

  54. A.Y. Ignatiev and R.R. Volkas, Mirror dark matter and large scale structure, Phys. Rev. D 68 (2003) 023518 [hep-ph/0304260] [SPIRES].

    ADS  Google Scholar 

  55. Z. Berezhiani, P. Ciarcelluti, D. Comelli and F.L. Villante, Structure formation with mirror dark matter: CMB and LSS, Int. J. Mod. Phys. D 14 (2005) 107 [astro-ph/0312605] [SPIRES].

    ADS  Google Scholar 

  56. P. Ciarcelluti, Cosmology with mirror dark matter. I: linear evolution of perturbations, Int. J. Mod. Phys. D 14 (2005) 187 [astro-ph/0409630] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. L. Bento and Z. Berezhiani, Leptogenesis via collisions: the lepton number leaking to the hidden sector, Phys. Rev. Lett. 87 (2001) 231304 [hep-ph/0107281] [SPIRES].

    Article  ADS  Google Scholar 

  58. R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [SPIRES].

    Article  ADS  Google Scholar 

  59. R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [SPIRES].

    ADS  Google Scholar 

  60. T. Hambye and G. Senjanović, Consequences of triplet seesaw for leptogenesis, Phys. Lett. B 582 (2004) 73 [hep-ph/0307237] [SPIRES].

    ADS  Google Scholar 

  61. S. Antusch and S.F. King, Type II leptogenesis and the neutrino mass scale, Phys. Lett. B 597 (2004) 199 [hep-ph/0405093] [SPIRES].

    ADS  Google Scholar 

  62. R.H. Cyburt, B.D. Fields, K.A. Olive and E. Skillman, New BBN limits on physics beyond the standard model from 4 He, Astropart. Phys. 23 (2005) 313 [astro-ph/0408033] [SPIRES].

    Article  ADS  Google Scholar 

  63. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  64. Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  65. M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [SPIRES].

    Article  ADS  Google Scholar 

  66. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [SPIRES].

    ADS  Google Scholar 

  67. H.V. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J. A 12 (2001) 147 [hep-ph/0103062] [SPIRES].

    ADS  Google Scholar 

  68. IGEX collaboration, C.E. Aalseth et al., The Igex 76ge neutrinoless double-beta decay experiment: prospects for next generation experiments, Phys. Rev. D 65 (2002) 092007 [hep-ex/0202026] [SPIRES].

    ADS  Google Scholar 

  69. P. Bamert, C.P. Burgess and R.N. Mohapatra, Heavy sterile neutrinos and neutrinoless double beta decay, Nucl. Phys. B 438 (1995) 3 [hep-ph/9408367] [SPIRES].

    Article  ADS  Google Scholar 

  70. P. Benes, A. Faessler, F. Simkovic and S. Kovalenko, Sterile neutrinos in neutrinoless double beta decay, Phys. Rev. D 71 (2005) 077901 [hep-ph/0501295] [SPIRES].

    ADS  Google Scholar 

  71. S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E0657 − 5, arXiv:0704.0261 [SPIRES].

  72. A. Kurylov and M. Kamionkowski, Generalized analysis of weakly-interacting massive particle searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [SPIRES].

    ADS  Google Scholar 

  73. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Long Chen.

Additional information

ArXiv ePrint: 0911.4463

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, H., Chen, SL., Mohapatra, R.N. et al. Leptogenesis as a common origin for matter and dark matter. J. High Energ. Phys. 2010, 124 (2010). https://doi.org/10.1007/JHEP03(2010)124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)124

Keywords

Navigation