Skip to main content
Log in

Theoretical constraints on brane inflation and cosmic superstring radiation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyze theoretical constraints on the radiation modes of cosmic superstrings. Given that cosmic superstrings are formed at the end of brane inflation, we first investigate the implications of recently elucidated supergravity constraints on brane inflation models. We show that both D3/D7 and \( {{{{\text{D}}3}} \left/ {{\overline {{\text{D}}3} }} \right.} \) brane inflation are subject to non-trivial constraints. Both inflationary models can be shown to satisfy those constraints, but for the case of D3/D7 there seem to be important consequences for the dynamics of the inflationary mechanism. Bearing this in mind, we analyze the theoretical constraints on the nature of the allowed radiation by cosmic superstrings in the context of a warped background where brane-antibrane inflation takes place. Clearly such constraints do not apply to field theoretic cosmic strings, or to cosmic strings that arise in a background without warping. We argue that in a warped background where one might expect axionic radiation to be enhanced relative to gravitational radiation, neither F-strings nor D-strings can emit axionic radiation, and FD-strings cannot give rise to Neveu-Schwarz-Neveu-Schwarz particle emission, while their Ramond-Ramond particle emission is not well-defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [SPIRES].

    ADS  Google Scholar 

  2. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  3. A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [SPIRES].

    Article  ADS  Google Scholar 

  4. S.W. Hawking, The development of irregularities in a single bubble inflationary universe, Phys. Lett. B 115 (1982) 295 [SPIRES].

    ADS  Google Scholar 

  5. A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett. B 117 (1982) 175 [SPIRES].

    ADS  Google Scholar 

  6. A.H. Guth and S.Y. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49 (1982) 1110 [SPIRES].

    Article  ADS  Google Scholar 

  7. J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous creation of almost scale-free density perturbations in an inflationary universe, Phys. Rev. D 28 (1983) 679 [SPIRES].

    ADS  Google Scholar 

  8. J. Martin and C. Ringeval, Inflation after WMAP3: confronting the slow-roll and exact power spectra to CMB data, JCAP 08 (2006) 009 [astro-ph/0605367] [SPIRES].

    ADS  Google Scholar 

  9. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].

    Article  ADS  Google Scholar 

  10. E. Calzetta and M. Sakellariadou, Inflation in inhomogeneous cosmology, Phys. Rev. D 45 (1992) 2802 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  11. E. Calzetta and M. Sakellariadou, Semiclassical effects and the onset of inflation, Phys. Rev. D 47 (1993) 3184 [gr-qc/9209007] [SPIRES].

    ADS  Google Scholar 

  12. C. Germani, W. Nelson and M. Sakellariadou, On the onset of inflation in loop quantum cosmology, Phys. Rev. D 76 (2007) 043529 [gr-qc/0701172] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  13. G.W. Gibbons and N. Turok, The measure problem in cosmology, Phys. Rev. D 77 (2008) 063516 [hep-th/0609095] [SPIRES].

    ADS  Google Scholar 

  14. A. Ashtekar and D. Sloan, Loop quantum cosmology and slow roll inflation, Phys. Lett. B 694 (2010) 108 [arXiv:0912.4093] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  15. D. Baumann and L. McAllister, Advances in inflation in string theory, Ann. Rev. Nucl. Part. Sci. 59 (2009) 67 [arXiv:0901.0265] [SPIRES].

    Article  ADS  Google Scholar 

  16. R. Kallosh, On inflation in string theory, Lect. Notes Phys. 738 (2008) 119 [hep-th/0702059] [SPIRES].

    Article  ADS  Google Scholar 

  17. J. Polchinski, Cosmic superstrings revisited, Int. J. Mod. Phys. A 20 (2005) 3413 [AIP Conf. Proc. 743 (2005) 331] [hep-th/0410082] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  18. M. Sakellariadou, Cosmic superstrings, Phil. Trans. Roy. Soc. Lond. A 366 (2008) 2881 [arXiv:0802.3379] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  19. M. Sakellariadou, Cosmic strings and cosmic superstrings, Nucl. Phys. Proc. Suppl. 192-193 (2009) 68 [arXiv:0902.0569] [SPIRES].

    Article  MathSciNet  Google Scholar 

  20. E.J. Copeland and T.W.B. Kibble, Cosmic strings and superstrings, Proc. Roy. Soc. Lond. A 466 (2010) 623 [arXiv:0911.1345] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  21. M. Sakellariadou, A note on the evolution of cosmic string/superstring networks, JCAP 04 (2005) 003 [hep-th/0410234] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  22. A. Avgoustidis and E.P.S. Shellard, Cosmic string evolution in higher dimensions, Phys. Rev. D 71 (2005) 123513 [hep-ph/0410349] [SPIRES].

    ADS  Google Scholar 

  23. E.J. Copeland and P.M. Saffin, On the evolution of cosmic-superstring networks, JHEP 11 (2005) 023 [hep-th/0505110] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Hindmarsh and P.M. Saffin, Scaling in a SU(2)/Z 3 model of cosmic superstring networks, JHEP 08 (2006) 066 [hep-th/0605014] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Rajantie, M. Sakellariadou and H. Stoica, Numerical experiments with p F- and q D-strings: the formation of (p,q) bound states, JCAP 11 (2007) 021 [arXiv:0706.3662] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. J. Urrestilla and A. Vilenkin, Evolution of cosmic superstring networks: a numerical simulation, JHEP 02 (2008) 037 [arXiv:0712.1146] [SPIRES].

    Article  ADS  Google Scholar 

  27. A. Avgoustidis, Cosmic string dynamics and evolution in warped spacetime, Phys. Rev. D 78 (2008) 023501 [arXiv:0712.3224] [SPIRES].

    ADS  Google Scholar 

  28. M. Sakellariadou and H. Stoica, Dynamics of F/D networks: the role of bound states, JCAP 08 (2008) 038 [arXiv:0806.3219] [SPIRES].

    ADS  Google Scholar 

  29. A. Avgoustidis and E.J. Copeland, The effect of kinematic constraints on multi-tension string network evolution, Phys. Rev. D 81 (2010) 063517 [arXiv:0912.4004] [SPIRES].

    ADS  Google Scholar 

  30. A. Pourtsidou, A. Avgoustidis, E.J. Copeland, L. Pogosian and D.A. Steer, Scaling configurations of cosmic superstring networks and their cosmological implications, Phys. Rev. D 83 (2011) 063525 [arXiv:1012.5014] [SPIRES].

    ADS  Google Scholar 

  31. T. Damour and A. Vilenkin, Gravitational radiation from cosmic (super)strings: bursts, stochastic background and observational windows, Phys. Rev. D 71 (2005) 063510 [hep-th/0410222] [SPIRES].

    ADS  Google Scholar 

  32. M.G. Jackson, Interactions of cosmic superstrings, JHEP 09 (2007) 035 [arXiv:0706.1264] [SPIRES].

    Article  ADS  Google Scholar 

  33. M.G. Jackson and X. Siemens, Gravitational wave bursts from cosmic superstring reconnections, JHEP 06 (2009) 089 [arXiv:0901.0867] [SPIRES].

    Article  ADS  Google Scholar 

  34. P. Binetruy, A. Bohe, T. Hertog and D.A. Steer, Gravitational wave bursts from cosmic superstrings with Y-junctions, Phys. Rev. D 80 (2009) 123510 [arXiv:0907.4522] [SPIRES].

    ADS  Google Scholar 

  35. H. Firouzjahi, Energy radiation by cosmic superstrings in brane inflation, Phys. Rev. D 77 (2008) 023532 [arXiv:0710.4609] [SPIRES].

    ADS  Google Scholar 

  36. K. Dasgupta, J.P. Hsu, R. Kallosh, A.D. Linde and M. Zagermann, D3/D7brane inflation and semilocal strings, JHEP 08 (2004) 030 [hep-th/0405247] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  37. K. Dasgupta, C. Herdeiro, S. Hirano and R. Kallosh, D3/D7 inflationary model and M-theory, Phys. Rev. D 65 (2002) 126002 [hep-th/0203019] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  38. M. Haack et al., Update of D3/D7-brane inflation on K 3 × T 2 /Z 2, Nucl. Phys. B 806 (2009) 103 [arXiv:0804.3961] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  39. C.P. Burgess, J.M. Cline and M. Postma, Axionic D 3-D 7 inflation, JHEP 03 (2009) 058 [arXiv:0811.1503] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  40. G.R. Dvali and S.H. Henry Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483] [SPIRES].

    ADS  Google Scholar 

  41. S.H.S. Alexander, Inflation from D-anti-D brane annihilation, Phys. Rev. D 65 (2002) 023507 [hep-th/0105032] [SPIRES].

    ADS  Google Scholar 

  42. G.R. Dvali, Q. Shafi and S. Solganik, D-brane inflation, hep-th/0105203 [SPIRES].

  43. C.P. Burgess et al., The inflationary brane-antibrane universe, JHEP 07 (2001) 047 [hep-th/0105204] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Shiu and S.H. Henry Tye, Some aspects of brane inflation, Phys. Lett. B 516 (2001) 421 [hep-th/0106274] [SPIRES].

    ADS  Google Scholar 

  45. S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  46. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  48. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos term in field theory and supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  50. K.R. Dienes and B. Thomas, On the inconsistency of Fayet-Iliopoulos terms in supergravity theories, Phys. Rev. D 81 (2010) 065023 [arXiv:0911.0677] [SPIRES].

    ADS  Google Scholar 

  51. Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  52. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [SPIRES].

    ADS  Google Scholar 

  53. E. Witten and J. Bagger, Quantization of Newton’s constant in certain supergravity theories, Phys. Lett. B 115 (1982) 202 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  54. A. Hebecker, S.C. Kraus, D. Lüst, S. Steinfurt and T. Weigand, Fluxbrane inflation, arXiv:1104.5016 [SPIRES].

  55. R. Gwyn, M. Sakellariadou and S. Sypsas, Cosmic strings from pseudo-anomalous Fayet-Iliopoulos U(1) in D3/D7 brane inflation, JHEP 10 (2010) 075 [arXiv:1008.0087] [SPIRES].

    Article  ADS  Google Scholar 

  56. M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117 [SPIRES].

  57. M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos terms in string theory, Nucl. Phys. B 289 (1987) 589 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  58. M. Dine, I. Ichinose and N. Seiberg, F terms and d terms in string theory, Nucl. Phys. B 293 (1987) 253 [SPIRES].

    Article  ADS  Google Scholar 

  59. J.J. Atick, L.J. Dixon and A. Sen, String calculation of Fayet-Iliopoulos d terms in arbitrary supersymmetric compactifications, Nucl. Phys. B 292 (1987) 109 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  60. P. Binetruy, G. Dvali, R. Kallosh and A. Van Proeyen, Fayet-Iliopoulos terms in supergravity and cosmology, Class. Quant. Grav. 21 (2004) 3137 [hep-th/0402046] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  61. C.P. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric D-terms, JHEP 10 (2003) 056 [hep-th/0309187] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  62. K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: a modern introduction, Cambridge University Press, Cambridge U.K. (2007) [SPIRES].

    MATH  Google Scholar 

  63. S.C. Davis, P. Binetruy and A.-C. Davis, Local axion cosmic strings from superstrings, Phys. Lett. B 611 (2005) 39 [hep-th/0501200] [SPIRES].

    ADS  Google Scholar 

  64. M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [SPIRES].

    ADS  Google Scholar 

  65. S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  66. D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped D-branes, JHEP 11 (2006) 031 [hep-th/0607050] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  67. S. Shandera, B. Shlaer, H. Stoica and S.H. Henry Tye, Inter-brane interactions in compact spaces and brane inflation, JCAP 02 (2004) 013 [hep-th/0311207] [SPIRES].

    Google Scholar 

  68. S. Sarangi and S.H. Henry Tye, Cosmic string production towards the end of brane inflation, Phys. Lett. B 536 (2002) 185 [hep-th/0204074] [SPIRES].

    ADS  Google Scholar 

  69. N.T. Jones, H. Stoica and S.H. Henry Tye, Brane interaction as the origin of inflation, JHEP 07 (2002) 051 [hep-th/0203163] [SPIRES].

    Article  ADS  Google Scholar 

  70. N.T. Jones, H. Stoica and S.H. Henry Tye, The production, spectrum and evolution of cosmic strings in brane inflation, Phys. Lett. B 563 (2003) 6 [hep-th/0303269] [SPIRES].

    ADS  Google Scholar 

  71. G. Dvali and A. Vilenkin, Formation and evolution of cosmic D-strings, JCAP 03 (2004) 010 [hep-th/0312007] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  72. A. Adams, H. Jockers, V. Kumar and J.M. Lapan, N = 1 σ-models in AdS 4, arXiv:1104.3155 [SPIRES].

  73. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  74. J.M. Cline and H. Stoica, Multibrane inflation and dynamical flattening of the inflaton potential, Phys. Rev. D 72 (2005) 126004 [hep-th/0508029] [SPIRES].

    ADS  Google Scholar 

  75. J.M. Cline, L. Hoi and B. Underwood, Dynamical fine tuning in brane inflation, JHEP 06 (2009) 078 [arXiv:0902.0339] [SPIRES].

    Article  ADS  Google Scholar 

  76. D. Baumann, A. Dymarsky, I.R. Klebanov and L. McAllister, Towards an explicit model of D-brane inflation, JCAP 01 (2008) 024 [arXiv:0706.0360] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  77. R. Jeannerot, J. Rocher and M. Sakellariadou, How generic is cosmic string formation in SUSY GUTs, Phys. Rev. D 68 (2003) 103514 [hep-ph/0308134] [SPIRES].

    ADS  Google Scholar 

  78. T.W.B. Kibble, Topology of cosmic domains and strings, J. Phys. A9 (1976) 1387 [SPIRES].

    ADS  Google Scholar 

  79. F.R. Bouchet, P. Peter, A. Riazuelo and M. Sakellariadou, Is there evidence for topological defects in the BOOMERANG data?, Phys. Rev. D 65 (2002) 021301 [astro-ph/0005022] [SPIRES].

    ADS  Google Scholar 

  80. J. Rocher and M. Sakellariadou, Constraints on supersymmetric Grand Unified Theories from cosmology, JCAP 03 (2005) 004 [hep-ph/0406120] [SPIRES].

    ADS  Google Scholar 

  81. J. Rocher and M. Sakellariadou, D-term inflation, cosmic strings and consistency with cosmic microwave background measurement, Phys. Rev. Lett. 94 (2005) 011303 [hep-ph/0412143] [SPIRES].

    Article  ADS  Google Scholar 

  82. J. Rocher and M. Sakellariadou, D-term inflation in non-minimal supergravity, JCAP 11 (2006) 001 [hep-th/0607226] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  83. N. Bevis, M. Hindmarsh, M. Kunz and J. Urrestilla, Fitting CMB data with cosmic strings and inflation, Phys. Rev. Lett. 100 (2008) 021301 [astro-ph/0702223] [SPIRES].

    Article  ADS  Google Scholar 

  84. R. Battye, B. Garbrecht and A. Moss, Tight constraints on F-and D-term hybrid inflation scenarios, Phys. Rev. D 81 (2010) 123512 [arXiv:1001.0769] [SPIRES].

    ADS  Google Scholar 

  85. R. Battye and A. Moss, Updated constraints on the cosmic string tension, Phys. Rev. D 82 (2010) 023521 [arXiv:1005.0479] [SPIRES].

    ADS  Google Scholar 

  86. H. Firouzjahi and S.H. Henry Tye, Brane inflation and cosmic string tension in superstring theory, JCAP 03 (2005) 009 [hep-th/0501099] [SPIRES].

    ADS  Google Scholar 

  87. M. Wyman, L. Pogosian and I. Wasserman, Bounds on cosmic strings from WMAP and SDSS, Phys. Rev. D 72 (2005) 023513 [Erratum ibid. D 73 (2006) 089905] [astro-ph/0503364] [SPIRES].

    ADS  Google Scholar 

  88. S.E. Shandera and S.H. Henry Tye, Observing brane inflation, JCAP 05 (2006) 007 [hep-th/0601099] [SPIRES].

    ADS  Google Scholar 

  89. E.J. Copeland, R.C. Myers and J. Polchinski, Cosmic F- and D-strings, JHEP 06 (2004) 013 [hep-th/0312067] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  90. L. Leblond and S.H. Henry Tye, Stability of D1-strings inside a D3-brane, JHEP 03 (2004) 055 [hep-th/0402072] [SPIRES].

    Article  ADS  Google Scholar 

  91. M. Majumdar and A. Christine-Davis, Cosmological creation of D-branes and anti-D-branes, JHEP 03 (2002) 056 [hep-th/0202148] [SPIRES].

    Article  ADS  Google Scholar 

  92. H. Firouzjahi and S.H. Henry Tye, Brane inflation and cosmic string tension in superstring theory, JCAP 03 (2005) 009 [hep-th/0501099] [SPIRES].

    ADS  Google Scholar 

  93. J. Polchinski, Open heterotic strings, JHEP 09 (2006) 082 [hep-th/0510033] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  94. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  95. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  96. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  97. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  98. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  99. H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  100. M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [SPIRES].

    Article  ADS  Google Scholar 

  101. T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  102. A.R. Frey, G. Torroba, B. Underwood and M.R. Douglas, The universal Kähler modulus in warped compactifications, JHEP 01 (2009) 036 [arXiv:0810.5768] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  103. H. Firouzjahi, L. Leblond and S.H. Henry Tye, The (p,q) string tension in a warped deformed conifold, JHEP 05 (2006) 047 [hep-th/0603161] [SPIRES].

    Article  ADS  Google Scholar 

  104. J.H. Schwarz, An SL(2,Z) multiplet of type IIB superstrings, Phys. Lett. B 360 (1995) 13 [Erratum ibid. B 364 (1995) 252] [hep-th/9508143] [SPIRES].

    ADS  Google Scholar 

  105. R. Brandenberger, H. Firouzjahi, J. Karouby and S. Khosravi, Gravitational radiation by cosmic strings in a junction, JCAP 01 (2009) 008 [arXiv:0810.4521] [SPIRES].

    ADS  Google Scholar 

  106. T. Vachaspati and A. Vilenkin, Gravitational radiation from cosmic strings, Phys. Rev. D 31 (1985) 3052 [SPIRES].

    ADS  Google Scholar 

  107. A. Vilenkin and T. Vachaspati, Radiation of Goldstone bosons from cosmic strings, Phys. Rev. D 35 (1987) 1138 [SPIRES].

    ADS  Google Scholar 

  108. A. Sen, Stable non-BPS states in string theory, JHEP 06 (1998) 007 [hep-th/9803194] [SPIRES].

    Article  ADS  Google Scholar 

  109. A. Sen and B. Zwiebach, Stable non-BPS states in F-theory, JHEP 03 (2000) 036 [hep-th/9907164] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  110. M. Cicoli, String loop moduli stabilisation and cosmology in IIB flux compactifications, Fortsch. Phys. 58 (2010) 115 [arXiv:0907.0665] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  111. P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [SPIRES].

    Article  ADS  Google Scholar 

  112. B. Underwood, A breathing mode for warped compactifications, arXiv:1009.4200 [SPIRES].

  113. A.A. Tseytlin, String cosmology and dilaton, in String quantum gravity and physics at the Planck scale, N. Sachez ed., World Scientific, Singapore (1993) [hep-th/9206067] [SPIRES].

    Google Scholar 

  114. E. Babichev and M. Kachelriess, Constraining cosmic superstrings with dilaton emission, Phys. Lett. B 614 (2005) 1 [hep-th/0502135] [SPIRES].

    ADS  Google Scholar 

  115. C.P. Burgess et al., Warped supersymmetry breaking, JHEP 04 (2008) 053 [hep-th/0610255] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  116. A.R. Frey and A. Maharana, Warped spectroscopy: localization of frozen bulk modes, JHEP 08 (2006) 021 [hep-th/0603233] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  117. L. Leblond, B. Shlaer and X. Siemens, Gravitational waves from broken cosmic strings: the bursts and the beads, Phys. Rev. D 79 (2009) 123519 [arXiv:0903.4686] [SPIRES].

    ADS  Google Scholar 

  118. E. Sabancilar, Cosmological constraints on strongly coupled moduli from cosmic strings, Phys. Rev. D 81 (2010) 123502 [arXiv:0910.5544] [SPIRES].

    ADS  Google Scholar 

  119. A.R. Frey, R.J. Danos and J.M. Cline, Warped Kaluza-Klein dark matter, JHEP 11 (2009) 102 [arXiv:0908.1387] [SPIRES].

    Article  ADS  Google Scholar 

  120. G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of warped flux compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  121. O. De Wolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [SPIRES].

    ADS  Google Scholar 

  122. S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  123. T. Damour and A. Vilenkin, Cosmic strings and the string dilaton, Phys. Rev. Lett. 78 (1997) 2288 [gr-qc/9610005] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  124. M. Peloso and L. Sorbo, Moduli from cosmic strings, Nucl. Phys. B 649 (2003) 88 [hep-ph/0205063] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mairi Sakellariadou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gwyn, R., Sakellariadou, M. & Sypsas, S. Theoretical constraints on brane inflation and cosmic superstring radiation. J. High Energ. Phys. 2011, 75 (2011). https://doi.org/10.1007/JHEP09(2011)075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)075

Keywords

Navigation