Skip to main content
Log in

Neutrino mass hierarchy determination using reactor antineutrinos

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Building on earlier studies, we investigate the possibility to determine the type of neutrino mass spectrum (i.e., “the neutrino mass hierarchy”) in a high statistics reactor \( {\bar{\nu }_e} \) experiment with a relatively large KamLAND-like detector and an optimal baseline of 60 Km. We analyze systematically the Fourier Sine and Cosine Transforms (FST and FCT) of simulated reactor antineutrino data with reference to their specific mass hierarchy-dependent features discussed earlier in the literature. We perform also a binned χ 2 analysis of the sensitivity of simulated reactor \( {\bar{\nu }_e} \) event spectrum data to the neutrino mass hierarchy, and determine, in particular, the characteristics of the detector and the experiment (energy resolution, visible energy threshold, exposure, systematic errors, binning of data, etc.), which would allow us to get significant information on, or even determine, the type of the neutrino mass spectrum. We find that if sin2 2θ 13 is sufficiently large, sin2 2θ 13 ≳ 0.02, the requirements on the set-up of interest are very challenging, but not impossible to realize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [SPIRES].

    Article  ADS  Google Scholar 

  2. Kamiokande collaboration, Y. Fukuda et al., Solar neutrino data covering solar cycle 22, Phys. Rev. Lett. 77 (1996) 1683 [SPIRES].

    Article  ADS  Google Scholar 

  3. SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [SPIRES].

    ADS  Google Scholar 

  4. GALLEX collaboration, P. Anselmann et al., Solar neutrinos observed by GALLEX at Gran Sasso., Phys. Lett. B 285 (1992) 376 [SPIRES].

    ADS  Google Scholar 

  5. GALLEX collaboration, W. Hampel et al., GALLEX solar neutrino observations: Results for GALLEX IV, Phys. Lett. B 447 (1999) 127 [SPIRES].

    ADS  Google Scholar 

  6. GNO collaboration, M. Altmann et al., Complete results for five years of GNO solar neutrino observations, Phys. Lett. B 616 (2005) 174 [hep-ex/0504037] [SPIRES].

    ADS  Google Scholar 

  7. Super-Kamiokande collaboration, S. Fukuda et al., Determination of Solar Neutrino Oscillation Parameters using 1496 Days of Super-Kamiokande-I Data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [SPIRES].

    ADS  Google Scholar 

  8. SNO collaboration, Q.R. Ahmad et al., Measurement of the charged current interactions produced by B-8 solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [SPIRES].

    Article  ADS  Google Scholar 

  9. SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [SPIRES].

    Article  ADS  Google Scholar 

  10. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].

    Article  ADS  Google Scholar 

  11. Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [SPIRES].

    Article  ADS  Google Scholar 

  12. KamLAND collaboration, K. Eguchi et al., First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [SPIRES].

    Article  ADS  Google Scholar 

  13. KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [SPIRES].

    Article  ADS  Google Scholar 

  14. Borexino collaboration, C. Arpesella et al., First real time detection of Be7 solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101 [arXiv:0708.2251] [SPIRES].

    ADS  Google Scholar 

  15. The Borexino collaboration, C. Arpesella et al., Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [SPIRES].

    Article  ADS  Google Scholar 

  16. K2K collaboration, M.H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].

    ADS  Google Scholar 

  17. MINOS collaboration, D.G. Michael et al., Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 [hep-ex/0607088] [SPIRES].

    Article  ADS  Google Scholar 

  18. MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].

    Article  ADS  Google Scholar 

  19. B. Pontecorvo, Mesonium and anti-mesonium, Zh. Eksp. Teor. Fiz. 33 (1957) 549 [Sov. Phys. JETP 6 (1957) 429] [SPIRES].

    Google Scholar 

  20. B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Zh. Eksp. Teor. Fiz. 34 (1958) 247 [Sov. Phys. JETP 7 (1958) 172] [SPIRES].

    Google Scholar 

  21. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  22. B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [SPIRES].

    ADS  Google Scholar 

  23. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  24. S.M. Bilenky and S.T. Petcov, Massive Neutrinos and Neutrino Oscillations, Rev. Mod. Phys. 59 (1987) 671 [SPIRES].

    Article  ADS  Google Scholar 

  25. S.M. Bilenky, J. Hosek and S.T. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [SPIRES].

    ADS  Google Scholar 

  26. P. Langacker, S.T. Petcov, G. Steigman and S. Toshev, On the Mikheev-Smirnov-Wolfenstein (MSW) Mechanism of Amplification of Neutrino Oscillations in Matter, Nucl. Phys. B 282 (1987) 589 [SPIRES].

    Article  ADS  Google Scholar 

  27. S.M. Bilenky, S. Pascoli and S.T. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. I: The three-neutrino mixing case, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265] [SPIRES].

    ADS  Google Scholar 

  28. S.T. Petcov, Theoretical Prospects of Neutrinoless Double Beta Decay, Physica Scripta T 121 (2005) 94 [hep-ph/0504166] [SPIRES].

    Article  ADS  Google Scholar 

  29. S. Pascoli and S.T. Petcov, Majorana Neutrinos, Neutrino Mass Spectrum and the | <m> − ∼ 10−3 eV Frontier in Neutrinoless Double Beta Decay, Phys. Rev. D 77 (2008) 113003 [arXiv:0711.4993] [SPIRES].

    ADS  Google Scholar 

  30. S. Pascoli, S.T. Petcov and C.E. Yaguna, Quasi-Degenerate Neutrino Mass Spectrum, μe + γ Decay and Leptogenesis, Phys. Lett. B 564 (2003) 241 [hep-ph/0301095] [SPIRES].

    ADS  Google Scholar 

  31. S.T. Petcov, T. Shindou and Y. Takanishi, Majorana CP-violating phases, RG running of neutrino mixing parameters and charged lepton flavour violating decays, Nucl. Phys. B 738 (2006) 219 [hep-ph/0508243] [SPIRES].

    Article  ADS  Google Scholar 

  32. S.T. Petcov and T. Shindou, Charged lepton decays l(i) → l(j) + γ, leptogenesis CP-violating parameters and Majorana phases, Phys. Rev. D 74 (2006) 073006 [hep-ph/0605151] [SPIRES].

    ADS  Google Scholar 

  33. S. Pascoli, S.T. Petcov and W. Rodejohann, On the connection of leptogenesis with low energy CP-violation and LFV charged lepton decays, Phys. Rev. D 68 (2003) 093007 [hep-ph/0302054] [SPIRES].

    ADS  Google Scholar 

  34. S.T. Petcov, W. Rodejohann, T. Shindou and Y. Takanishi, The see-saw mechanism, neutrino Yukawa couplings, LFV decays l(i) → l(j) + γ and leptogenesis, Nucl. Phys. B 739 (2006) 208 [hep-ph/0510404] [SPIRES].

    Article  ADS  Google Scholar 

  35. E. Molinaro and S.T. Petcov, A Case of Subdominant/Suppressed ’High Energy’ Contribution to the Baryon Asymmetry of the Universe in Flavoured Leptogenesis, Phys. Lett. B 671 (2009) 60 [arXiv:0808.3534] [SPIRES].

    ADS  Google Scholar 

  36. E. Molinaro and S.T. Petcov, The Interplay Between the ’Low’ and ’High’ Energy CP-Violation in Leptogenesis, Eur. Phys. J. C 61 (2009) 93 [arXiv:0803.4120] [SPIRES].

    Article  ADS  Google Scholar 

  37. C. Hagedorn, E. Molinaro and S.T. Petcov, Majorana Phases and Leptogenesis in See-Saw Models with A 4 Symmetry, JHEP 09 (2009) 115 [arXiv:0908.0240] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. CHOOZ collaboration, M. Apollonio et al., Limits on Neutrino Oscillations from the CHOOZ Experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [SPIRES].

    ADS  Google Scholar 

  39. A. Bandyopadhyay, S. Choubey, S. Goswami, S.T. Petcov and D.P. Roy, Neutrino Oscillation Parameters After High Statistics KamLAND Results, arXiv:0804.4857 [SPIRES].

  40. G.L. Fogli et al., Observables sensitive to absolute neutrino masses (Addendum), Phys. Rev. D 78 (2008) 033010 [arXiv:0805.2517] [SPIRES].

    ADS  Google Scholar 

  41. T. Schwetz, M.A. Tórtola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  42. M. Mezzetto and T. Schwetz, θ 13 : phenomenology, present status and prospect, J. Phys. G 37 (2010) 103001 [arXiv:1003.5800] [SPIRES].

    ADS  Google Scholar 

  43. N. Cabibbo, Time Reversal Violation in Neutrino Oscillation, Phys. Lett. B 72 (1978) 333 [SPIRES].

    ADS  Google Scholar 

  44. V.D. Barger, K. Whisnant and R.J.N. Phillips, CP Violation in Three Neutrino Oscillations, Phys. Rev. Lett. 45 (1980) 2084 [SPIRES].

    Article  ADS  Google Scholar 

  45. P.I. Krastev and S.T. Petcov, Resonance Amplification and t Violation Effects in Three Neutrino Oscillations in the Earth, Phys. Lett. B 205 (1988) 84 [SPIRES].

    ADS  Google Scholar 

  46. S.T. Petcov, Towards Complete Neutrino Mixing Matrix and CP-Violation Nucl. Phys. Proc. Suppl. 143 (2005) 159 [hep-ph/0412410] [SPIRES].

    Article  ADS  Google Scholar 

  47. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future Neutrino Factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].

    Article  ADS  Google Scholar 

  48. R.N. Mohapatra et al., Theory of neutrinos: A white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [SPIRES].

    Article  ADS  Google Scholar 

  49. S.T. Petcov and M. Piai, The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments, Phys. Lett. B 533 (2002) 94 [hep-ph/0112074] [SPIRES].

    ADS  Google Scholar 

  50. S. Choubey, S.T. Petcov and M. Piai, Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment, Phys. Rev. D 68 (2003) 113006 [hep-ph/0306017] [SPIRES].

    ADS  Google Scholar 

  51. J. Learned, S.T. Dye, S. Pakvasa and R.C. Svoboda, Determination of neutrino mass hierarchy and θ(13) with a remote detector of reactor antineutrinos, Phys. Rev. D 78 (2008) 071302 [hep-ex/0612022] [SPIRES].

    ADS  Google Scholar 

  52. M. Batygov et al., Prospects of neutrino oscillation measurements in the detection of reactor antineutrinos with a medium-baseline experiment, arXiv:0810.2580 [SPIRES].

  53. L. Zhan, Y. Wang, J. Cao and L. Wen, Determination of the Neutrino Mass Hierarchy at an Intermediate Baseline, Phys. Rev. D 78 (2008) 111103 [arXiv:0807.3203] [SPIRES].

    ADS  Google Scholar 

  54. L. Zhan, Y. Wang, J. Cao and L. Wen, Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos, Phys. Rev. D 79 (2009) 073007 [arXiv:0901.2976] [SPIRES].

    ADS  Google Scholar 

  55. S.M. Bilenky, D. Nicolo and S.T. Petcov, Constraints on |U(e3)|2 from a three-neutrino oscillation analysis of the CHOOZ data, Phys. Lett. B 538 (2002) 77 [hep-ph/0112216] [SPIRES].

    ADS  Google Scholar 

  56. M. Freund, M. Lindner, S.T. Petcov and A. Romanino, Testing matter effects in very long baseline neutrino oscillation experiments, Nucl. Phys. B 578 (2000) 27 [hep-ph/9912457] [SPIRES].

    Article  ADS  Google Scholar 

  57. A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [SPIRES].

    Article  ADS  Google Scholar 

  58. V.D. Barger, S. Geer, R. Raja and K. Whisnant, Determination of the pattern of neutrino masses at a neutrino factory, Phys. Lett. B 485 (2000) 379 [hep-ph/0004208] [SPIRES].

    ADS  Google Scholar 

  59. M. Chizhov, M. Maris and S.T. Petcov, On the oscillation length resonance in the transitions of solar and atmospheric neutrinos crossing the earth core, hep-ph/9810501 [SPIRES].

  60. J. Bernabéu, S. Palomares Ruiz and S.T. Petcov, Atmospheric neutrino oscillations, θ(13) and neutrino mass hierarchy, Nucl. Phys. B 669 (2003) 255 [hep-ph/0305152] [SPIRES].

    Article  ADS  Google Scholar 

  61. S. Palomares-Ruiz and S.T. Petcov, Three-neutrino oscillations of atmospheric neutrinos, θ(13), neutrino mass hierarchy and iron magnetized detectors, Nucl. Phys. B 712 (2005) 392 [hep-ph/0406096] [SPIRES].

    Article  ADS  Google Scholar 

  62. S.T. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [SPIRES].

    Article  ADS  Google Scholar 

  63. R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta and S. Uma Sankar, Earth matter effects at very long baselines and the neutrino mass hierarchy, Phys. Rev. D 73 (2006) 053001 [hep-ph/0411252] [SPIRES].

    ADS  Google Scholar 

  64. R. Gandhi et al., Mass Hierarchy Determination via future Atmospheric Neutrino Detectors, Phys. Rev. D 76 (2007) 073012 [arXiv:0707.1723] [SPIRES].

    ADS  Google Scholar 

  65. S.T. Petcov, Diffractive-Like (or Parametric-Resonance-Like?) Enhancement of the Earth (Day-Night) Effect for Solar Neutrinos Crossing the Earth Core, Phys. Lett. B 434 (1998) 321 [Erratum ibid. B 444 (1998) 584] [hep-ph/9805262] [SPIRES].

    ADS  Google Scholar 

  66. M.V. Chizhov and S.T. Petcov, New conditions for a total neutrino conversion in a medium, Phys. Rev. Lett. 83 (1999) 1096 [hep-ph/9903399] [SPIRES].

    Article  ADS  Google Scholar 

  67. M.V. Chizhov and S.T. Petcov, Chizhov and Petcov Reply:, Phys. Rev. Lett. 85 (2000) 3979 [hep-ph/0504247] [SPIRES].

    Article  ADS  Google Scholar 

  68. M.V. Chizhov and S.T. Petcov, Enhancing mechanisms of neutrino transitions in a medium of nonperiodic constant-density layers and in the earth, Phys. Rev. D 63 (2001) 073003 [hep-ph/9903424] [SPIRES].

    ADS  Google Scholar 

  69. S. Pascoli and S.T. Petcov, The SNO solar neutrino data, neutrinoless double-beta decay and neutrino mass spectrum, Phys. Lett. B 544 (2002) 239 [hep-ph/0205022] [SPIRES].

    ADS  Google Scholar 

  70. S. Pascoli and S.T. Petcov, Addendum: The SNO Solar Neutrino Data, Neutrinoless Double Beta-Decay and Neutrino Mass Spectrum, Phys. Lett. B 580 (2004) 280 [hep-ph/0310003] [SPIRES].

    ADS  Google Scholar 

  71. S.M. Bilenky, M.D. Mateev and S.T. Petcov, A comment on the measurement of neutrino masses in beta-decay experiments, Phys. Lett. B 639 (2006) 312 [hep-ph/0603178] [SPIRES].

    ADS  Google Scholar 

  72. K. Eitel et al., Direct neutrino mass experiments, Nucl. Phys. Proc. Suppl. 143 (2005) 197.

    Article  ADS  Google Scholar 

  73. P. Vogel and J. Engel, Neutrino Electromagnetic Form-Factors, Phys. Rev. D 39 (1989) 3378 [SPIRES].

    ADS  Google Scholar 

  74. P. Vogel and J.F. Beacom, The angular distribution of the neutron inverse beta decay, \( {\bar{\nu }_e} + p \to {e^{+} } + n \), Phys. Rev. D 60 (1999) 053003 [hep-ph/9903554] [SPIRES].

    ADS  Google Scholar 

  75. T2K collaboration, Y. Hayato, T2K at J-PARC, Nucl. Phys. Proc. Suppl. 143 (2005) 269 [SPIRES].

    Article  ADS  Google Scholar 

  76. P. Huber, M. Lindner, M. Rolinec, T. Schwetz and W. Winter, Prospects of accelerator and reactor neutrino oscillation experiments for the coming ten years, Phys. Rev. D 70 (2004) 073014 [hep-ph/0403068] [SPIRES].

    ADS  Google Scholar 

  77. P. Huber, M. Lindner, M. Rolinec, T. Schwetz and W. Winter, Combined potential of future long-baseline and reactor experiments, Nucl. Phys. Proc. Suppl. 145 (2005) 190 [hep-ph/0412133] [SPIRES].

    Article  ADS  Google Scholar 

  78. http://lbne.fnal.gov/.

  79. Double CHOOZ collaboration, F. Ardellier et al., Double CHOOZ: A search for the neutrino mixing angle θ(13), hep-ex/0606025 [SPIRES].

  80. Daya-Bay collaboration, X. Guo et al., A precision measurement of the neutrino mixing angle θ(13) using reactor antineutrinos at Daya Bay, hep-ex/0701029 [SPIRES].

  81. Daya Bay homepage http://dayawane.ihep.ac.cn/.

  82. RENO collaboration, J.K. Ahn et al., RENO: An Experiment for Neutrino Oscillation Parameter θ 13 Using Reactor Neutrinos at Yonggwang, arXiv:1003.1391 [SPIRES].

  83. S. Choubey and S.T. Petcov, Reactor anti-neutrino oscillations and gadolinium loaded Super-Kamiokande detector, Phys. Lett. B 594 (2004) 333 [hep-ph/0404103] [SPIRES].

    ADS  Google Scholar 

  84. J.F. Beacom and M.R. Vagins, GADZOOKS! Antineutrino spectroscopy with large water Cherenkov detectors, Phys. Rev. Lett. 93 (2004) 171101 [hep-ph/0309300] [SPIRES].

    Article  ADS  Google Scholar 

  85. A. Bandyopadhyay, S. Choubey and S. Goswami, Exploring the sensitivity of current and future experiments to Theta(odot), Phys. Rev. D 67 (2003) 113011 [hep-ph/0302243] [SPIRES].

    ADS  Google Scholar 

  86. A. Bandyopadhyay, S. Choubey, S. Goswami and S.T. Petcov, High precision measurements of Theta(solar) in solar and reactor neutrino experiments, Phys. Rev. D 72 (2005) 033013 [hep-ph/0410283] [SPIRES].

    ADS  Google Scholar 

  87. H. Minakata, H. Nunokawa, W.J.C. Teves and R. Zukanovich Funchal, Reactor Measurement of θ 12 : Principles, Accuracies and Physics Potentials, Phys. Rev. D 71 (2005) 013005 [hep-ph/0407326] [SPIRES].

    ADS  Google Scholar 

  88. A. Donini, E. Fernandez-Martinez, D. Meloni and S. Rigolin, ν μ disappearance at the SPL, T2K-I, NOnuA and the neutrino factory, Nucl. Phys. B 743 (2006) 41 [hep-ph/0512038] [SPIRES].

    Article  ADS  Google Scholar 

  89. K. Anderson et al., White paper report on using nuclear reactors to search for a value of θ 13, hep-ex/0402041 [SPIRES].

  90. NOvA collaboration, D.S. Ayres et al., NOvA proposal to build a 30-kiloton off-axis detector to study neutrino oscillations in the Fermilab NuMI beamline, hep-ex/0503053 [SPIRES].

  91. S.T. Dye et al., Earth Radioactivity Measurements with a Deep Ocean Anti-neutrino Observatory, Earth Moon Planets 99 (2006) 241 [hep-ex/0609041] [SPIRES].

    Article  ADS  Google Scholar 

  92. M.V. Diwan et al., Very long baseline neutrino oscillation experiments for precise measurements of mixing parameters and CP-violating effects, Phys. Rev. D 68 (2003) 012002 [hep-ph/0303081] [SPIRES].

    ADS  Google Scholar 

  93. G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Getting the most from the statistical analysis of solar neutrino oscillations, Phys. Rev. D 66 (2002) 053010 [hep-ph/0206162] [SPIRES].

    ADS  Google Scholar 

  94. H. Minakata, H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Determination of the neutrino mass hierarchy via the phase of the disappearance oscillation probability with a monochromatic anti-electron-neutrino source, Phys. Rev. D 76 (2007) 053004 [Erratum ibid. D 76 (2007) 079901] [hep-ph/0701151] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pomita Ghoshal.

Additional information

ArXiv ePrint: 1011.1646

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoshal, P., Petcov, S.T. Neutrino mass hierarchy determination using reactor antineutrinos. J. High Energ. Phys. 2011, 58 (2011). https://doi.org/10.1007/JHEP03(2011)058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)058

Keywords

Navigation