Skip to main content
Log in

Drag force in a strongly coupled anisotropic plasma

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled \( \mathcal{N} = 4 \) plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient μ can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically μp. We discuss the conditions under which this behaviour may extend to more general situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaborations critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

    ADS  Google Scholar 

  2. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

    ADS  Google Scholar 

  3. Proceedings of the Quark Matter 2011, J. Phys. G 38 (2011) 120301.

  4. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [INSPIRE].

    Article  ADS  Google Scholar 

  5. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [INSPIRE].

    ADS  Google Scholar 

  6. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113 ] [hep-th/9711200] [INSPIRE].

  7. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  9. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  10. W. Florkowski, Anisotropic fluid dynamics in the early stage of relativistic heavy-ion collisions, Phys. Lett. B 668 (2008) 32 [arXiv:0806.2268] [INSPIRE].

    ADS  Google Scholar 

  11. W. Florkowski and R. Ryblewski, Dynamics of anisotropic plasma at the early stages of relativistic heavy-ion collisions, Acta Phys. Polon. B 40 (2009) 2843 [arXiv:0901.4653] [INSPIRE].

    ADS  Google Scholar 

  12. R. Ryblewski and W. Florkowski, Early anisotropic hydrodynamics and the RHIC early-thermalization and HBT puzzles, Phys. Rev. C 82 (2010) 024903 [arXiv:1004.1594] [INSPIRE].

    ADS  Google Scholar 

  13. W. Florkowski and R. Ryblewski, Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 034907 [arXiv:1007.0130] [INSPIRE].

    ADS  Google Scholar 

  14. M. Martinez and M. Strickland, Dissipative dynamics of highly anisotropic systems, Nucl. Phys. A 848 (2010) 183 [arXiv:1007.0889] [INSPIRE].

    ADS  Google Scholar 

  15. R. Ryblewski and W. Florkowski, Non-boost-invariant motion of dissipative and highly anisotropic fluid, J. Phys. G 38 (2011) 015104 [arXiv:1007.4662] [INSPIRE].

    ADS  Google Scholar 

  16. M. Martinez and M. Strickland, Non-boost-invariant anisotropic dynamics, Nucl. Phys. A 856 (2011) 68 [arXiv:1011.3056] [INSPIRE].

    ADS  Google Scholar 

  17. R. Ryblewski and W. Florkowski, Highly anisotropic hydrodynamicsdiscussion of the model assumptions and forms of the initial conditions, Acta Phys. Polon. B 42 (2011) 115 [arXiv:1011.6213] [INSPIRE].

    Article  Google Scholar 

  18. R. Ryblewski and W. Florkowski, Highly-anisotropic and strongly-dissipative hydrodynamics with transverse expansion, Eur. Phys. J. C 71 (2011) 1761 [arXiv:1103.1260] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Mateos and D. Trancanelli, The anisotropic \( \mathcal{N} = 4 \) super Yang-Mills plasma and its instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].

    Article  ADS  Google Scholar 

  21. C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark moving through \( \mathcal{N} = 4 \) supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled \( \mathcal{N} = 4 \) Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].

    ADS  Google Scholar 

  24. C.P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries, JHEP 09 (2006) 032 [hep-th/0605191] [INSPIRE].

    Article  ADS  Google Scholar 

  25. E. Caceres and A. Guijosa, Drag force in charged \( \mathcal{N} = 4 \) SYM plasma, JHEP 11 (2006) 077 [hep-th/0605235] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.-J. Sin and I. Zahed, Amperes law and energy loss in AdS/CFT duality, Phys. Lett. B 648 (2007) 318 [hep-ph/0606049] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. T. Matsuo, D. Tomino and W.-Y. Wen, Drag force in SYM plasma with B field from AdS/CFT, JHEP 10 (2006) 055 [hep-th/0607178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. P. Talavera, Drag force in a string model dual to large-N QCD, JHEP 01 (2007) 086 [hep-th/0610179] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. E. Antonyan, Friction coefficient for quarks in supergravity duals, hep-th/0611235 [INSPIRE].

  30. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. C. Herzog and A. Vuorinen, Spinning dragging strings, JHEP 10 (2007) 087 [arXiv:0708.0609] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Chernicoff and A. Guijosa, Energy loss of gluons, baryons and k-quarks in an \( \mathcal{N} = 4 \) SYM plasma, JHEP 02 (2007) 084 [hep-th/0611155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S.S. Gubser, Momentum fluctuations of heavy quarks in the gauge-string duality, Nucl. Phys. B 790 (2008) 175 [hep-th/0612143] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. J. Casalderrey-Solana and D. Teaney, Transverse momentum broadening of a fast quark in a \( \mathcal{N} = 4 \) Yang-Mills plasma, JHEP 04 (2007) 039 [hep-th/0701123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. G. Bertoldi, F. Bigazzi, A.L. Cotrone and J.D. Edelstein, Holography and unquenched quark-gluon plasmas, Phys. Rev. D 76 (2007) 065007 [hep-th/0702225] [INSPIRE].

    ADS  Google Scholar 

  36. K.B. Fadafan, R 2 curvature-squared corrections on drag force, JHEP 12 (2008) 051 [arXiv:0803.2777] [INSPIRE].

    Article  Google Scholar 

  37. M. Chernicoff and A. Guijosa, Acceleration, energy loss and screening in strongly-coupled gauge theories, JHEP 06 (2008) 005 [arXiv:0803.3070] [INSPIRE].

    Article  ADS  Google Scholar 

  38. K.B. Fadafan, Charge effect and finitet Hooft coupling correction on drag force and jet quenching parameter, Eur. Phys. J. C 68 (2010) 505 [arXiv:0809.1336] [INSPIRE].

    Article  ADS  Google Scholar 

  39. F. Bigazzi, A.L. Cotrone, J. Mas, A. Paredes, A.V. Ramallo and J. Tarrío, D3-D7 quark-gluon plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].

    Article  ADS  Google Scholar 

  40. K.B. Fadafan, Heavy quarks in the presence of higher derivative corrections from AdS/CFT, Eur. Phys. J. C 71 (2011) 1799 [arXiv:1102.2289] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Guijosa and J.F. Pedraza, Early-time energy loss in a strongly-coupled SYM plasma, JHEP 05 (2011) 108 [arXiv:1102.4893] [INSPIRE].

    Article  ADS  Google Scholar 

  42. P. Chesler and A. Vuorinen, Heavy flavor diffusion in weakly coupled \( \mathcal{N} = 4 \) super Yang-Mills theory, JHEP 11 (2006) 037 [hep-ph/0607148] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. S.C. Huot, S. Jeon and G.D. Moore, Shear viscosity in weakly coupled \( \mathcal{N} = 4 \) super Yang-Mills theory compared to QCD, Phys. Rev. Lett. 98 (2007) 172303 [hep-ph/0608062] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J.-P. Blaizot, E. Iancu, U. Kraemmer and A. Rebhan, Hard thermal loops and the entropy of supersymmetric Yang-Mills theories, JHEP 06 (2007) 035 [hep-ph/0611393] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. W. Horowitz and M. Gyulassy, Heavy quark jet tomography of Pb + Pb at LHC: AdS/CFT drag or pQCD energy loss?, Phys. Lett. B 666 (2008) 320 [arXiv:0706.2336] [INSPIRE].

    ADS  Google Scholar 

  46. J.J. Friess, S.S. Gubser and G. Michalogiorgakis, Dissipation from a heavy quark moving through script \( \mathcal{N} = 4 \) super-Yang-Mills plasma, JHEP 09 (2006) 072 [hep-th/0605292] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. Y.-H. Gao, W.-S. Xu and D.-F. Zeng, Wake of color fields in charged \( \mathcal{N} = 4 \) SYM plasmas, hep-th/0606266 [INSPIRE].

  48. J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, Stress tensor of a quark moving through \( \mathcal{N} = 4 \) thermal plasma, Phys. Rev. D 75 (2007) 106003 [hep-th/0607022] [INSPIRE].

    ADS  Google Scholar 

  49. A. Yarom, High momentum behavior of a quark wake, Phys. Rev. D 75 (2007) 125010 [hep-th/0702164] [INSPIRE].

    ADS  Google Scholar 

  50. A. Yarom, Energy deposited by a quark moving in an \( \mathcal{N} = 4 \) super Yang-Mills plasma, Phys. Rev. D 75 (2007) 105023 [hep-th/0703095] [INSPIRE].

    ADS  Google Scholar 

  51. P.M. Chesler and L.G. Yaffe, Wake of a quark moving through a strongly coupled \( \mathcal{N} = 4 \) supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 99 (2007) 152001 [arXiv:0706.0368] [INSPIRE].

    Article  ADS  Google Scholar 

  52. S.S. Gubser, S.S. Pufu and A. Yarom, Sonic booms and diffusion wakes generated by a heavy quark in thermal gauge-string duality, Phys. Rev. Lett. 100 (2008) 012301 [arXiv:0706.4307] [INSPIRE].

    Article  ADS  Google Scholar 

  53. S.S. Gubser and A. Yarom, Universality of the diffusion wake in the gauge-string duality, Phys. Rev. D 77 (2008) 066007 [arXiv:0709.1089] [INSPIRE].

    ADS  Google Scholar 

  54. A. Nata Atmaja and K. Schalm, Anisotropic drag force from 4D Kerr-AdS black hole, JHEP 04 (2011) 070 [arXiv:1012.3800] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. K.L. Panigrahi and S. Roy, Drag force in a hot non-relativistic, non-commutative Yang-Mills plasma, JHEP 04 (2010) 003 [arXiv:1001.2904] [INSPIRE].

    Article  ADS  Google Scholar 

  56. T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography-supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  58. K. Pilch and N.P. Warner, \( \mathcal{N} = 2 \) supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. A. Buchel and J.T. Liu, Thermodynamics of the \( \mathcal{N} = {2^* } \) flow, JHEP 11 (2003) 031 [hep-th/0305064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

    ADS  Google Scholar 

  61. C.P. Herzog, Holographic prediction for the deconfinement temperature, Phys. Rev. Lett. 98 (2007) 091601 [hep-th/0608151] [INSPIRE].

    Article  ADS  Google Scholar 

  62. E. Nakano, S. Teraguchi and W.-Y. Wen, Drag force, jet quenching and an AdS/QCD model, Phys. Rev. D 75 (2007) 085016 [hep-ph/0608274] [INSPIRE].

    ADS  Google Scholar 

  63. C. Hoyos, Drag and jet quenching of heavy quarks in a strongly coupled script \( \mathcal{N} = {2^* } \) plasma, JHEP 09 (2009) 068 [arXiv:0907.5036] [INSPIRE].

    Article  ADS  Google Scholar 

  64. H. Liu, K. Rajagopal and Y. Shi, Robustness and infrared sensitivity of various observables in the application of AdS/CFT to heavy ion collisions, JHEP 08 (2008) 048 [arXiv:0803.3214] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Trancanelli.

Additional information

ArXiv ePrint: 1202.3696

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernicoff, M., Fernández, D., Mateos, D. et al. Drag force in a strongly coupled anisotropic plasma. J. High Energ. Phys. 2012, 100 (2012). https://doi.org/10.1007/JHEP08(2012)100

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)100

Keywords

Navigation