Skip to main content
Log in

Anisotropic drag force from 4D Kerr-AdS black hole

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using AdS/CFT we investigate the effect of angular-momentum-induced anisotropy on the instantaneous drag force of a heavy quark. The dual description is that of a string moving in the background of a Kerr-AdS black hole. The system exhibits the expected focusing of jets towards the impact parameter plane. We put forward that we can use the connection between this focusing behavior and the angular momentum induced pressure gradient to extrapolate the pressure gradient correction to the drag force that can be used for transverse elliptic flow in realistic heavy ion collisions. The result is recognizable as a relativistic pressure gradient force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.V. Shuryak, Strongly coupled quark-gluon plasma: The status report, hep-ph/0608177 [SPIRES].

  2. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  4. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505[hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  6. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  9. P.F. Kolb, J. Sollfrank and U.W. Heinz, Anisotropic transverse flow and the quark-hadron phase transition, Phys. Rev. C 62 (2000) 054909 [hep-ph/0006129] [SPIRES].

    ADS  Google Scholar 

  10. P.F. Kolb, P. Huovinen, U.W. Heinz and H. Heiselberg, Elliptic flow at SPS and RHIC: From kinetic transport to hydrodynamics, Phys. Lett. B 500 (2001) 232 [hep-ph/0012137] [SPIRES].

    ADS  Google Scholar 

  11. P.F. Kolb and U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy-ion collisions, nucl-th/0305084 [SPIRES].

  12. S. Bhattacharyya et al., Local Fluid Dynamical Entropy from Gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [SPIRES].

    Article  ADS  Google Scholar 

  13. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Lin and E. Shuryak, Grazing Collisions of Gravitational Shock Waves and Entropy Production in Heavy Ion Collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [SPIRES].

    ADS  Google Scholar 

  15. S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [SPIRES].

    Article  ADS  Google Scholar 

  16. E. Avsar, E. Iancu, L. McLerran and D.N. Triantafyllopoulos, Shockwaves and deep inelastic scattering within the gauge/gravity duality, JHEP 11 (2009) 105 [arXiv:0907.4604] [SPIRES].

    Article  ADS  Google Scholar 

  17. A. Duenas-Vidal and M.A. Vazquez-Mozo, Colliding AdS gravitational shock waves in various dimensions and holography, JHEP 07 (2010) 021 [arXiv:1004.2609] [SPIRES].

    Article  ADS  Google Scholar 

  18. A. Taliotis, Heavy Ion Collisions with Transverse Dynamics from Evolving AdS Geometries, JHEP 09 (2010) 102 [arXiv:1004.3500] [SPIRES].

    Article  ADS  Google Scholar 

  19. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. P.M. Chesler and L.G. Yaffe, The wake of a quark moving through a strongly-coupled \( \mathcal{N} = 4 \) supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 99 (2007) 152001 [arXiv:0706.0368] [SPIRES].

    Article  ADS  Google Scholar 

  24. P.M. Chesler and L.G. Yaffe, The stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma: comparing hydrodynamics and AdS/CFT, Phys. Rev. D 78 (2008) 045013 [arXiv:0712.0050] [SPIRES].

    ADS  Google Scholar 

  25. J.J. Friess, S.S. Gubser and G. Michalogiorgakis, Dissipation from a heavy quark moving through N = 4 super-Yang-Mills plasma, JHEP 09 (2006) 072 [hep-th/0605292] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, The stress tensor of a quark moving through N = 4 thermal plasma, Phys. Rev. D 75 (2007) 106003 [hep-th/0607022] [SPIRES].

    ADS  Google Scholar 

  27. J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, Expanding plasmas and quasinormal modes of anti-de Sitter black holes, JHEP 04 (2007) 080 [hep-th/0611005] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. S.A. Voloshin, A.M. Poskanzer and R. Snellings, Collective phenomena in non-central nuclear collisions, arXiv:0809.2949 [SPIRES].

  29. F. Becattini, F. Piccinini and J. Rizzo, Angular momentum conservation in heavy ion collisions at very high energy, Phys. Rev. C 77 (2008) 024906 [arXiv:0711.1253] [SPIRES].

    ADS  Google Scholar 

  30. N. Armesto, (ed.) et al., Heavy Ion Collisions at the LHC-Last Call for Predictions, J. Phys. G 35 (2008) 054001 [arXiv:0711.0974] [SPIRES].

  31. S. Hemming and L. Thorlacius, Thermodynamics of Large AdS Black Holes, JHEP 11 (2007) 086 [arXiv:0709.3738] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter Spaces, Commun. Math. Phys. 98 (1985) 391 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. J. de Boer, V.E. Hubeny, M. Rangamani and M. Shigemori, Brownian motion in AdS/CFT, JHEP 07 (2009) 094 [arXiv:0812.5112] [SPIRES].

    Article  Google Scholar 

  35. G.W. Gibbons, M.J. Perry and C.N. Pope, The First Law of Thermodynamics for Kerr-Anti-de Sitter Black Holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, The general Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53 (2005) 49 [hep-th/0404008] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. C.P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries, JHEP 09 (2006) 032 [hep-th/0605191] [SPIRES].

    Article  ADS  Google Scholar 

  38. E. Caceres and A. Guijosa, Drag force in charged N = 4 SYM plasma, JHEP 11 (2006) 077 [hep-th/0605235] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. C.P. Herzog and A. Vuorinen, Spinning Dragging Strings, JHEP 10 (2007) 087 [arXiv:0708.0609] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. A.N. Atmaja, J. de Boer and M. Shigemori, Holographic Brownian Motion and Time Scales in Strongly Coupled Plasmas, arXiv:1002.2429 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nata Atmaja.

Additional information

ArXiv ePrint: 1012.3800

1Permanent address.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nata Atmaja, A., Schalm, K. Anisotropic drag force from 4D Kerr-AdS black hole. J. High Energ. Phys. 2011, 70 (2011). https://doi.org/10.1007/JHEP04(2011)070

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)070

Keywords

Navigation