Skip to main content
Log in

Early-time energy loss in a strongly-coupled SYM plasma

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We carry out an analytic study of the early-time motion of a quark in a strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT correspondence. Our approach extracts the first thermal effects as a small perturbation of the known quark dynamics in vacuum, using a double expansion that is valid for early times and for (moderately) ultrarelativistic quark velocities. The quark is found to lose energy at a rate that differs significantly from the previously derived stationary/late-time result: it scales like T 4 instead of T 2, and is associated with a friction coefficient that is not independent of the quark momentum. Under conditions representative of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a few times smaller than its late-time counterpart. Our analysis additionally leads to thermally-corrected expressions for the intrinsic energy and momentum of the quark, in which the previously discovered limiting velocity of the quark is found to appear naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Tannenbaum, Results from RHIC with implications for LHC, arXiv:1006.5701 [SPIRES].

  2. I.M. Dremin and A.V. Leonidov, The quark-gluon medium, Phys. Usp. 53 (2011) 1123 [arXiv:1006.4603] [SPIRES].

    Article  ADS  Google Scholar 

  3. W.A. Zajc, The fluid nature of quark-gluon plasma, Nucl. Phys. A 805 (2008) 283 [arXiv:0802.3552] [SPIRES].

    ADS  Google Scholar 

  4. B. Müller, From quark-gluon plasma to the perfect liquid, Acta Phys. Polon. B 38 (2007) 3705 [arXiv:0710.3366] [SPIRES].

    Google Scholar 

  5. E. Shuryak, Emerging theory of strongly coupled quark-gluon plasma, hep-ph/0703208 [SPIRES].

  6. D.G. d’Enterria, Quark-gluon matter, J. Phys. G 34 (2007) S53 [nucl-ex/0611012] [SPIRES].

    ADS  Google Scholar 

  7. C.A. Salgado, Heavy ions theory review, Acta Phys. Polon. B 38 (2007) 975 [hep-ph/0609172] [SPIRES].

    ADS  Google Scholar 

  8. E.V. Shuryak, Strongly coupled quark-gluon plasma: the status report, hep-ph/0608177 [SPIRES].

  9. M.J. Tannenbaum, Recent results in relativistic heavy ion collisions: from ‘a new state of matter’ to ‘the perfect fluid’, Rept. Prog. Phys. 69 (2006) 2005 [nucl-ex/0603003] [SPIRES].

    Article  ADS  Google Scholar 

  10. B. Müller and J.L. Nagle, Results from the Relativistic Heavy Ion Collider, Ann. Rev. Nucl. Part. Sci. 56 (2006) 93 [nucl-th/0602029] [SPIRES].

    Article  ADS  Google Scholar 

  11. M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl. Phys. A 750 (2005) 30 [nucl-th/0405013] [SPIRES].

    ADS  Google Scholar 

  12. A. Majumder and M. Van Leeuwen, The theory and phenomenology of perturbative QCD based jet quenching, arXiv:1002.2206 [SPIRES].

  13. U.A. Wiedemann, Jet quenching in heavy ion collisions, arXiv:0908.2306 [SPIRES].

  14. R. Rapp and H. van Hees, Heavy quark diffusion as a probe of the quark-gluon plasma, arXiv:0803.0901 [SPIRES].

  15. J. Casalderrey-Solana and C.A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon. B 38 (2007) 3731 [arXiv:0712.3443] [SPIRES].

    ADS  Google Scholar 

  16. A. Kovner and U.A. Wiedemann, Gluon radiation and parton energy loss, hep-ph/0304151 [SPIRES].

  17. R. Baier, Jet quenching, Nucl. Phys. A 715 (2003) 209 [hep-ph/0209038] [SPIRES].

    ADS  Google Scholar 

  18. R. Baier, D. Schiff and B.G. Zakharov, Energy loss in perturbative QCD, Ann. Rev. Nucl. Part. Sci. 50 (2000) 37 [hep-ph/0002198] [SPIRES].

    Article  ADS  Google Scholar 

  19. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  20. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through \( \mathcal{N} = 4 \) supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled \( \mathcal{N} = 4 \) Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [SPIRES].

    ADS  Google Scholar 

  24. H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [SPIRES].

    Article  ADS  Google Scholar 

  25. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [SPIRES].

  26. V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [SPIRES].

    Google Scholar 

  27. J.D. Edelstein, J.P. Shock and D. Zoakos, The AdS/CFT correspondence and non-perturbative QCD, AIP Conf. Proc. 1116 (2009) 265 [arXiv:0901.2534] [SPIRES].

    ADS  Google Scholar 

  28. S.S. Gubser and A. Karch, From gauge-string duality to strong interactions: a pedestrian’s guide, Ann. Rev. Nucl. Part. Sci. 59 (2009) 145 [arXiv:0901.0935] [SPIRES].

    Article  ADS  Google Scholar 

  29. D. Mateos, String theory and quantum chromodynamics, Class. Quant. Grav. 24 (2007) S713 [arXiv:0709.1523] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. K. Peeters and M. Zamaklar, The string/gauge theory correspondence in QCD, Eur. Phys. J. ST 152 (2007) 113 [arXiv:0708.1502] [SPIRES].

    Article  Google Scholar 

  31. W.A. Horowitz, pQCD vs. AdS/CFT tested by heavy quark energy loss, J. Phys. G 35 (2008) 044025 [arXiv:0710.0703] [SPIRES].

    ADS  Google Scholar 

  32. W.A. Horowitz, Testing AdS/CFT at LHC, PoS(High-pT physics09)043 [arXiv:0905.0504] [SPIRES].

  33. W.A. Horowitz and M. Gyulassy, Testing AdS/CFT drag and pQCD heavy quark energy loss, J. Phys. G 35 (2008) 104152 [arXiv:0804.4330] [SPIRES].

    ADS  Google Scholar 

  34. C. Marquet and T. Renk, Jet quenching in the strongly-interacting quark-gluon plasma, Phys. Lett. B 685 (2010) 270 [arXiv:0908.0880] [SPIRES].

    ADS  Google Scholar 

  35. D.E. Kharzeev, Universal upper bound on the energy of a parton escaping from the strongly coupled quark-gluon matter, arXiv:0806.0358 [SPIRES].

  36. M. Chernicoff, J.A. García and A. Güijosa, Generalized Lorentz-Dirac equation for a strongly-coupled gauge theory, Phys. Rev. Lett. 102 (2009) 241601 [arXiv:0903.2047] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Chernicoff, J.A. García and A. Güijosa, A tail of a quark in \( \mathcal{N} = 4 \) SYM, JHEP 09 (2009) 080 [arXiv:0906.1592] [SPIRES].

    Article  ADS  Google Scholar 

  38. S.S. Gubser, Momentum fluctuations of heavy quarks in the gauge-string duality, Nucl. Phys. B 790 (2008) 175 [hep-th/0612143] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. J. Casalderrey-Solana and D. Teaney, Transverse momentum broadening of a fast quark in a \( \mathcal{N} = 4 \) Yang-Mills plasma, JHEP 04 (2007) 039 [hep-th/0701123] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Chernicoff and A. Güijosa, Acceleration, energy loss and screening in strongly-coupled gauge theories, JHEP 06 (2008) 005 [arXiv:0803.3070] [SPIRES].

    Article  ADS  Google Scholar 

  41. F. Dominguez, C. Marquet, A.H. Mueller, B. Wu and B.-W. Xiao, Comparing energy loss and p -broadening in perturbative QCD with strong coupling \( \mathcal{N} = 4 \) SYM theory, Nucl. Phys. A 811 (2008) 197 [arXiv:0803.3234] [SPIRES].

    ADS  Google Scholar 

  42. B.-W. Xiao, On the exact solution of the accelerating string in AdS 5 space, Phys. Lett. B 665 (2008) 173 [arXiv:0804.1343] [SPIRES].

    ADS  Google Scholar 

  43. F. Bigazzi et al., D3-D7 quark-gluon plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [SPIRES].

    Article  ADS  Google Scholar 

  44. C. Hoyos-Badajoz, Drag and jet quenching of heavy quarks in a strongly coupled N = 2* plasma, JHEP 09 (2009) 068 [arXiv:0907.5036] [SPIRES].

    Article  ADS  Google Scholar 

  45. U. Gürsoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, Thermal transport and drag force in improved holographic QCD, JHEP 12 (2009) 056 [arXiv:0906.1890] [SPIRES].

    Article  Google Scholar 

  46. M. Mia, K. Dasgupta, C. Gale and S. Jeon, Five easy pieces: the dynamics of quarks in strongly coupled plasmas, Nucl. Phys. B 839 (2010) 187 [arXiv:0902.1540] [SPIRES].

    Article  ADS  Google Scholar 

  47. W.A. Horowitz and Y.V. Kovchegov, Shock treatment: heavy quark drag in a novel AdS geometry, Phys. Lett. B 680 (2009) 56 [arXiv:0904.2536] [SPIRES].

    ADS  Google Scholar 

  48. M. Chernicoff and A. Güijosa, Energy loss of gluons, baryons and k-quarks in an N = 4 SYM plasma, JHEP 02 (2007) 084 [hep-th/0611155] [SPIRES].

    Article  ADS  Google Scholar 

  49. S.S. Gubser, D.R. Gulotta, S.S. Pufu and F.D. Rocha, Gluon energy loss in the gauge-string duality, JHEP 10 (2008) 052 [arXiv:0803.1470] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. Y. Hatta, E. Iancu and A.H. Mueller, Jet evolution in the N = 4 SYM plasma at strong coupling, JHEP 05 (2008) 037 [arXiv:0803.2481] [SPIRES].

    Article  ADS  Google Scholar 

  51. P.M. Chesler, K. Jensen and A. Karch, Jets in strongly-coupled N = 4 super Yang-Mills theory, Phys. Rev. D 79 (2009) 025021 [arXiv:0804.3110] [SPIRES].

    ADS  Google Scholar 

  52. P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. D 79 (2009) 125015 [arXiv:0810.1985] [SPIRES].

    ADS  Google Scholar 

  53. P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories revisited: 3-point correlators with gauge-gravity duality, JHEP 10 (2010) 099 [arXiv:1008.4023] [SPIRES].

    Article  ADS  Google Scholar 

  54. P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories simplified, JHEP 04 (2011) 027 [arXiv:1101.2689] [SPIRES].

    Article  ADS  Google Scholar 

  55. J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, The stress tensor of a quark moving through \( \mathcal{N} = 4 \) thermal plasma, Phys. Rev. D 75 (2007) 106003 [hep-th/0607022] [SPIRES].

    ADS  Google Scholar 

  56. S.S. Gubser and S.S. Pufu, Master field treatment of metric perturbations sourced by the trailing string, Nucl. Phys. B 790 (2008) 42 [hep-th/0703090] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. A. Yarom, On the energy deposited by a quark moving in an N = 4 SYM plasma, Phys. Rev. D 75 (2007) 105023 [hep-th/0703095] [SPIRES].

    ADS  Google Scholar 

  58. S.S. Gubser, S.S. Pufu and A. Yarom, Energy disturbances due to a moving quark from gauge-string duality, JHEP 09 (2007) 108 [arXiv:0706.0213] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. P.M. Chesler and L.G. Yaffe, The wake of a quark moving through a strongly-coupled \( \mathcal{N} = 4 \) supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 99 (2007) 152001 [arXiv:0706.0368] [SPIRES].

    Article  ADS  Google Scholar 

  60. S.S. Gubser, S.S. Pufu and A. Yarom, Sonic booms and diffusion wakes generated by a heavy quark in thermal AdS/CFT, Phys. Rev. Lett. 100 (2008) 012301 [arXiv:0706.4307] [SPIRES].

    Article  ADS  Google Scholar 

  61. S.S. Gubser and A. Yarom, Universality of the diffusion wake in the gauge-string duality, Phys. Rev. D 77 (2008) 066007 [arXiv:0709.1089] [SPIRES].

    ADS  Google Scholar 

  62. S.S. Gubser, S.S. Pufu and A. Yarom, Shock waves from heavy-quark mesons in AdS/CFT, JHEP 07 (2008) 108 [arXiv:0711.1415] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. P.M. Chesler and L.G. Yaffe, The stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma: comparing hydrodynamics and AdS/CFT, Phys. Rev. D 78 (2008) 045013 [arXiv:0712.0050] [SPIRES].

    ADS  Google Scholar 

  64. J. Noronha, G. Torrieri and M. Gyulassy, Near zone Navier-Stokes analysis of heavy quark jet quenching in an \( \mathcal{N} = 4 \) SYM plasma, Phys. Rev. C 78 (2008) 024903 [arXiv:0712.1053] [SPIRES].

    ADS  Google Scholar 

  65. S.S. Gubser, S.S. Pufu, F.D. Rocha and A. Yarom, Energy loss in a strongly coupled thermal medium and the gauge-string duality, arXiv:0902.4041 [SPIRES].

  66. Y. Hatta, E. Iancu, A.H. Mueller and D.N. Triantafyllopoulos, Radiation by a heavy quark in N = 4 SYM at strong coupling, arXiv:1102.0232 [SPIRES].

  67. Y. Hatta, E. Iancu, A.H. Mueller and D.N. Triantafyllopoulos, Aspects of the UV/IR correspondence: energy broadening and string fluctuations, JHEP 02 (2011) 065 [arXiv:1011.3763] [SPIRES].

    Article  ADS  Google Scholar 

  68. V.E. Hubeny, Holographic dual of collimated radiation, New J. Phys. 13 (2011) 035006 [arXiv:1012.3561] [SPIRES].

    Article  ADS  Google Scholar 

  69. V.E. Hubeny, Relativistic beaming in AdS/CFT, arXiv:1011.1270 [SPIRES].

  70. C. Athanasiou, P.M. Chesler, H. Liu, D. Nickel and K. Rajagopal, Synchrotron radiation in strongly coupled conformal field theories, Phys. Rev. D 81 (2010) 126001 [arXiv:1001.3880] [SPIRES].

    ADS  Google Scholar 

  71. H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [SPIRES].

    Article  ADS  Google Scholar 

  72. M. Chernicoff, J.A. García and A. Güijosa, The energy of a moving quark-antiquark pair in an \( \mathcal{N} = 4 \) SYM plasma, JHEP 09 (2006) 068 [hep-th/0607089] [SPIRES].

    Article  ADS  Google Scholar 

  73. P.C. Argyres, M. Edalati and J.F. Vázquez-Poritz, Spacelike strings and jet quenching from a Wilson loop, JHEP 04 (2007) 049 [hep-th/0612157] [SPIRES].

    Article  ADS  Google Scholar 

  74. P.C. Argyres, M. Edalati and J.F. Vázquez-Poritz, Lightlike Wilson loops from AdS/CFT, JHEP 03 (2008) 071 [arXiv:0801.4594] [SPIRES].

    Article  ADS  Google Scholar 

  75. F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, arXiv:1006.1367 [SPIRES].

  76. S. Peigne, P.-B. Gossiaux and T. Gousset, Retardation effect for collisional energy loss of hard partons produced in a QGP, JHEP 04 (2006) 011 [hep-ph/0509185] [SPIRES].

    Article  ADS  Google Scholar 

  77. M. Djordjevic, Collisional energy loss in a finite size QCD matter, Phys. Rev. C 74 (2006) 064907 [nucl-th/0603066] [SPIRES].

    ADS  Google Scholar 

  78. P.B. Gossiaux, S. Peigne, C. Brandt and J. Aichelin, Energy loss of a heavy quark produced in a finite size medium, JHEP 04 (2007) 012 [hep-ph/0608061] [SPIRES].

    Article  ADS  Google Scholar 

  79. P.B. Gossiaux, J. Aichelin, C. Brandt, T. Gousset and S. Peigne, Energy loss of a heavy quark produced in a finite-size quark-gluon plasma, J. Phys. G 34 (2007) S817 [hep-ph/0703095] [SPIRES].

    ADS  Google Scholar 

  80. G. Beuf, C. Marquet and B.-W. Xiao, Heavy-quark energy loss and thermalization in a strongly coupled SYM plasma, Phys. Rev. D 80 (2009) 085001 [arXiv:0812.1051] [SPIRES].

    ADS  Google Scholar 

  81. A. Mikhailov, Nonlinear waves in AdS/CFT correspondence, hep-th/0305196 [SPIRES].

  82. P.C. Argyres, M. Edalati and J.F. Vázquez-Poritz, No-drag string configurations for steadily moving quark-antiquark pairs in a thermal bath, JHEP 01 (2007) 105 [hep-th/0608118] [SPIRES].

    Article  ADS  Google Scholar 

  83. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  84. Q.J. Ejaz, T. Faulkner, H. Liu, K. Rajagopal and U.A. Wiedemann, A limiting velocity for quarkonium propagation in a strongly coupled plasma via AdS/CFT, JHEP 04 (2008) 089 [arXiv:0712.0590] [SPIRES].

    Article  Google Scholar 

  85. R.C. Myers and A. Sinha, The fast life of holographic mesons, J. Phys. G 35 (2008) 104062 [SPIRES].

    ADS  Google Scholar 

  86. J.P. Shock and J. Tarrio, A note on the velocity of holographic long-lived mesons, Phys. Lett. B 688 (2010) 244 [arXiv:0912.2954] [SPIRES].

    ADS  Google Scholar 

  87. H. Liu, K. Rajagopal and U.A. Wiedemann, An AdS/CFT calculation of screening in a hot wind, Phys. Rev. Lett. 98 (2007) 182301 [hep-ph/0607062] [SPIRES].

    Article  ADS  Google Scholar 

  88. K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic melting and related properties of mesons in a quark gluon plasma, Phys. Rev. D 74 (2006) 106008 [hep-th/0606195] [SPIRES].

    ADS  Google Scholar 

  89. L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [SPIRES].

  90. A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  91. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  92. J. de Boer, V.E. Hubeny, M. Rangamani and M. Shigemori, Brownian motion in AdS/CFT, JHEP 07 (2009) 094 [arXiv:0812.5112] [SPIRES].

    Article  Google Scholar 

  93. D.T. Son and D. Teaney, Thermal noise and stochastic strings in AdS/CFT, JHEP 07 (2009) 021 [arXiv:0901.2338] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  94. E. Cáceres, M. Chernicoff, A. Güijosa and J.F. Pedraza, Quantum fluctuations and the Unruh effect in strongly-coupled conformal field theories, JHEP 06 (2010) 078 [arXiv:1003.5332] [SPIRES].

    Article  ADS  Google Scholar 

  95. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Langevin diffusion of heavy quarks in non-conformal holographic backgrounds, JHEP 12 (2010) 088 [arXiv:1006.3261] [SPIRES].

    Article  Google Scholar 

  96. M. Chernicoff and A. Paredes, Accelerated detectors and worldsheet horizons in AdS/CFT, JHEP 03 (2011) 063 [arXiv:1011.4206] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  97. H. Dorn and H.J. Otto, Q anti-Q potential from AdS-CFT relation at T ≥ 0: dependence on orientation in internal space and higher curvature corrections, JHEP 09 (1998) 021 [hep-th/9807093] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  98. J. Greensite and P. Olesen, Worldsheet fluctuations and the heavy quark potential in the AdS/CFT approach, JHEP 04 (1999) 001 [hep-th/9901057] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  99. J.L. Hovdebo, M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Holographic mesons: adding flavor to the AdS/CFT duality, Int. J. Mod. Phys. A 20 (2005) 3428 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  100. P.A.M. Dirac, Classical theory of radiating electrons, Proc. Roy. Soc. Lond. A 167 (1938) 148 [SPIRES].

    ADS  Google Scholar 

  101. J. Casalderrey-Solana and D. Mateos, Prediction of a photon peak in relativistic heavy ion collisions, Phys. Rev. Lett. 102 (2009) 192302 [arXiv:0806.4172] [SPIRES].

    Article  ADS  Google Scholar 

  102. J. Casalderrey-Solana, D. Fernandez and D. Mateos, A new mechanism of quark energy loss, Phys. Rev. Lett. 104 (2010) 172301 [arXiv:0912.3717] [SPIRES].

    Article  ADS  Google Scholar 

  103. J. Casalderrey-Solana, D. Fernandez and D. Mateos, Cherenkov mesons as in-medium quark energy loss, JHEP 11 (2010) 091 [arXiv:1009.5937] [SPIRES].

    Article  ADS  Google Scholar 

  104. S.S. Gubser, Comparing the drag force on heavy quarks in \( \mathcal{N} = 4 \) super-Yang-Mills theory and QCD, Phys. Rev. D 76 (2007) 126003 [hep-th/0611272] [SPIRES].

    ADS  Google Scholar 

  105. A. Buchel, M.P. Heller and R.C. Myers, sQGP as hCFT, Phys. Lett. B 680 (2009) 521 [arXiv:0908.2802] [SPIRES].

    ADS  Google Scholar 

  106. STAR collaboration, B.I. Abelev et al., Erratum: Transverse momentum and centrality dependence of high-p t non-photonic electron suppression in Au + Au collisions at \( \sqrt {{{s_{NN}}}} = 200 \) GeV, Phys. Rev. Lett. 98 (2007) 192301 [nucl-ex/0607012] [SPIRES].

    Article  ADS  Google Scholar 

  107. PHENIX collaboration, A. Adare et al., Energy loss and flow of heavy quarks in Au + Au collisions at \( \sqrt {{{s_{NN}}}} = 200 \) GeV, Phys. Rev. Lett. 98 (2007) 172301 [nucl-ex/0611018] [SPIRES].

    Article  ADS  Google Scholar 

  108. PHENIX collaboration, A. Adare et al., Heavy quark production in p + p and energy loss and flow of heavy quarks in Au + Au collisions at \( \sqrt {{{s_{NN}}}} = 200 \) GeV, arXiv:1005.1627 [SPIRES].

  109. STAR collaboration, M.M. Aggarwal et al., Measurement of the bottom contribution to non-photonic electron production in p + p collisions at \( \sqrt {{{s_{NN}}}} = 200 \) GeV, Phys. Rev. Lett. 105 (2010) 202301 [arXiv:1007.1200] [SPIRES].

    Article  ADS  Google Scholar 

  110. S. Chunlen, K. Peeters and M. Zamaklar, Finite-size effects for jet quenching, arXiv:1012.4677 [SPIRES].

  111. A.N. Atmaja and K. Schalm, Anisotropic drag force from 4D Kerr-AdS black holes, JHEP 04 (2011) 070 [arXiv:1012.3800] [SPIRES].

    Article  Google Scholar 

  112. H. Nastase, The RHIC fireball as a dual black hole, hep-th/0501068 [SPIRES].

  113. E. Shuryak, S.-J. Sin and I. Zahed, A gravity dual of RHIC collisions, J. Korean Phys. Soc. 50 (2007) 384 [hep-th/0511199] [SPIRES].

    Article  Google Scholar 

  114. R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  115. H. Nastase, More on the RHIC fireball and dual black holes, hep-th/0603176 [SPIRES].

  116. R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  117. S. Nakamura and S.-J. Sin, A holographic dual of hydrodynamics, JHEP 09 (2006) 020 [hep-th/0607123] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  118. S.-J. Sin, S. Nakamura and S.P. Kim, Elliptic flow, Kasner universe and holographic dual of RHIC fireball, JHEP 12 (2006) 075 [hep-th/0610113] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  119. R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [SPIRES].

    Article  ADS  Google Scholar 

  120. S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions: I. Falling into the AdS, Phys. Rev. D 77 (2008) 085013 [hep-ph/0610168] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  121. J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, Expanding plasmas and quasinormal modes of anti-de Sitter black holes, JHEP 04 (2007) 080 [hep-th/0611005] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  122. D. Bak and R.A. Janik, From static to evolving geometries: R-charged hydrodynamics from supergravity, Phys. Lett. B 645 (2007) 303 [hep-th/0611304] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  123. K. Kajantie and T. Tahkokallio, Spherically expanding matter in AdS/CFT, Phys. Rev. D 75 (2007) 066003 [hep-th/0612226] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  124. A. Bernamonti and R. Peschanski, Time-dependent AdS/CFT correspondence and the quark-gluon plasma, arXiv:1102.0725 [SPIRES].

  125. R.A. Janik, The dynamics of quark-gluon plasma and AdS/CFT, Lect. Notes Phys. 828 (2011) 147 [arXiv:1003.3291] [SPIRES].

    Article  Google Scholar 

  126. G.C. Giecold, Heavy quark in an expanding plasma in AdS/CFT, JHEP 06 (2009) 002 [arXiv:0904.1874] [SPIRES].

    Article  ADS  Google Scholar 

  127. A. Paredes, K. Peeters and M. Zamaklar, Temperature versus acceleration: the Unruh effect for holographic models, JHEP 04 (2009) 015 [arXiv:0812.0981] [SPIRES].

    Article  ADS  Google Scholar 

  128. K.B. Fadafan, H. Liu, K. Rajagopal and U.A. Wiedemann, Stirring strongly coupled plasma, Eur. Phys. J. C 61 (2009) 553 [arXiv:0809.2869] [SPIRES].

    Article  ADS  Google Scholar 

  129. N. Evans, J. French, K. Jensen and E. Threlfall, Hadronization at the AdS wall, Phys. Rev. D 81 (2010) 066004 [arXiv:0908.0407] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Pedraza.

Additional information

ArXiv ePrint: 1102.4893

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güijosa, A., Pedraza, J.F. Early-time energy loss in a strongly-coupled SYM plasma. J. High Energ. Phys. 2011, 108 (2011). https://doi.org/10.1007/JHEP05(2011)108

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)108

Keywords

Navigation