Skip to main content
Log in

General composite Higgs models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct a general class of pseudo-Goldstone composite Higgs models, within the minimal SO(5)/SO(4) coset structure, that are not necessarily of moose-type. We characterize the main properties these models should have in order to give rise to a Higgs mass around 125 GeV. We assume the existence of relatively light and weakly coupled spin 1 and 1/2 resonances. In absence of a symmetry principle, we introduce the Minimal Higgs Potential (MHP) hypothesis: the Higgs potential is assumed to be one-loop dominated by the SM fields and the above resonances, with a contribution that is made calculable by imposing suitable generalizations of the first and second Weinberg sum rules. We show that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances. Their presence can also be important for the models to successfully pass the electroweak precision tests. Interestingly enough, the latter can also be passed by models with a heavy Higgs around 320 GeV. The composite Higgs models of the moose-type considered in the literature can be seen as particular limits of our class of models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  2. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].

    Article  ADS  Google Scholar 

  4. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  6. H. Hatanaka, T. Inami and C. Lim, The Gauge hierarchy problem and higher dimensional gauge theories, Mod. Phys. Lett. A 13 (1998) 2601 [hep-th/9805067] [INSPIRE].

    Article  ADS  Google Scholar 

  7. L.J. Hall, Y. Nomura and D. Tucker-Smith, Gauge Higgs unification in higher dimensions, Nucl. Phys. B 639 (2002) 307 [hep-ph/0107331] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Kubo, C. Lim and H. Yamashita, The Hosotani mechanism in bulk gauge theories with an orbifold extra space S 1/Z 2, Mod. Phys. Lett. A 17 (2002) 2249 [hep-ph/0111327] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Burdman and Y. Nomura, Unification of Higgs and gauge fields in five-dimensions, Nucl. Phys. B 656 (2003) 3 [hep-ph/0210257] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Y. Hosotani and M. Mabe, Higgs boson mass and electroweak-gravity hierarchy from dynamical gauge-Higgs unification in the warped spacetime, Phys. Lett. B 615 (2005) 257 [hep-ph/0503020] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Panico, M. Serone and A. Wulzer, A Model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys. B 739 (2006) 186 [hep-ph/0510373] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Panico, M. Serone and A. Wulzer, Electroweak Symmetry Breaking and Precision Tests with a Fifth Dimension, Nucl. Phys. B 762 (2007) 189 [hep-ph/0605292] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Cacciapaglia, C. Csáki and S.C. Park, Fully radiative electroweak symmetry breaking, JHEP 03 (2006) 099 [hep-ph/0510366] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  17. A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs Unification and Radiative Electroweak Symmetry Breaking in Warped Extra Dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].

    ADS  Google Scholar 

  18. G. Panico, E. Ponton, J. Santiago and M. Serone, Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [INSPIRE].

    ADS  Google Scholar 

  19. K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Panico and A. Wulzer, The Discrete Composite Higgs Model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S. De Curtis, M. Redi and A. Tesi, The 4D Composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].

    Article  Google Scholar 

  22. N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  25. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].

    Article  ADS  Google Scholar 

  28. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt {s} = {7} \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  29. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    Article  ADS  Google Scholar 

  30. W. Fisher for the CDF and D0 collaborations, Seeking the Brout-Englert-Higgs Boson: New Results from Tevatron Experiments, talk given at Rencontres de Moriond 2012, La Thuile (Aosta), Italy, 7 march 2012, https://indico.in2p3.fr/getFile.py/access?contribId=87&sessionId=1&resId=0&materialId=paper&confId=6001.

  31. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs Search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC Experimental Scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE].

    Article  Google Scholar 

  34. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Weinberg, Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18 (1967) 507 [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269 [INSPIRE].

  37. CMS collaboration, S. Chatrchyan et al., Search for heavy bottom-like quarks in 4.9 inverse femtobarns of pp collisions at \( \sqrt {s} = {7} \) TeV, JHEP 05 (2012) 123 [arXiv:1204.1088] [INSPIRE].

    Article  ADS  Google Scholar 

  38. CMS collaboration, S. Chatrchyan et al., Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at \( \sqrt {s} = {7} \) TeV, arXiv:1203.5410 [INSPIRE].

  39. G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett. B 223 (1989) 425 [INSPIRE].

    Article  ADS  Google Scholar 

  40. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].

    Article  ADS  Google Scholar 

  42. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for \( Zb\overline b \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  44. A. Orgogozo and S. Rychkov, Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking, JHEP 03 (2012) 046 [arXiv:1111.3534] [INSPIRE].

    Article  ADS  Google Scholar 

  45. E. Witten, Some Inequalities Among Hadron Masses, Phys. Rev. Lett. 51 (1983) 2351 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. M. Serone, Holographic Methods and Gauge-Higgs Unification in Flat Extra Dimensions, New J. Phys. 12 (2010) 075013 [arXiv:0909.5619] [INSPIRE].

    Article  ADS  Google Scholar 

  47. G. Panico, M. Safari and M. Serone, Simple and Realistic Composite Higgs Models in Flat Extra Dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [INSPIRE].

  50. G. Altarelli, R. Barbieri and F. Caravaglios, Nonstandard analysis of electroweak precision data, Nucl. Phys. B 405 (1993) 3 [INSPIRE].

    ADS  Google Scholar 

  51. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Wulzer, Modeling and Testing a Composite Higgs, talk at Workshop on Strongly Coupled Physics Beyond the Standard Model, ICTP, Trieste, Itlay, 25–27 January 2012.

  53. B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  Google Scholar 

  55. O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, arXiv:1204.6333 [INSPIRE].

  56. M. Redi and A. Tesi, Implications of a Light Higgs in Composite Models, arXiv:1205.0232 [INSPIRE].

  57. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    Article  ADS  Google Scholar 

  58. M.S. Carena, E. Ponton, J. Santiago and C.E. Wagner, Light Kaluza Klein States in Randall-Sundrum Models with Custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. M.S. Carena, E. Ponton, J. Santiago and C. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].

    ADS  Google Scholar 

  60. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

    ADS  Google Scholar 

  61. CDF and D0 collaboration, T.E.W. Group, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [INSPIRE].

  62. K. Aoki, Z. Hioki, M. Konuma, R. Kawabe and T. Muta, Electroweak Theory. Framework of On-Shell Renormalization and Study of Higher Order Effects, Prog. Theor. Phys. Suppl. 73 (1982) 1 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Serone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzocca, D., Serone, M. & Shu, J. General composite Higgs models. J. High Energ. Phys. 2012, 13 (2012). https://doi.org/10.1007/JHEP08(2012)013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)013

Keywords

Navigation