Skip to main content
Log in

The discrete composite Higgs model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We describe a concrete, predictive incarnation of the general paradigm of a composite Higgs boson, which provides a valid alternative to the standard holographic models in five space-time dimensions. Differently from the latter, our model is four-dimensional and simple enough to be implemented in an event generator for collider studies. The model is inspired by dimensional deconstruction and hence it retains useful features of the five-dimensional scenario, in particular, the Higgs potential is finite and calculable. Therefore our setup, in spite of being simple, provides a complete description of the composite Higgs physics. After constructing the model we present a first analysis of its phenomenology, focusing on the structure of the Higgs potential, on the constraints from the EWPT and on the spectrum of the new particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dimopoulos and J. Preskill, Massless Composites With Massive Constituents, Nucl. Phys. B 199 (1982) 206 [SPIRES].

    Article  ADS  Google Scholar 

  2. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].

    ADS  Google Scholar 

  3. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].

    ADS  Google Scholar 

  4. H. Georgi, D.B. Kaplan and P. Galison, Calculation Of The Composite Higgs Mass, Phys. Lett. B 143 (1984) 152 [SPIRES].

    ADS  Google Scholar 

  5. T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [SPIRES].

    ADS  Google Scholar 

  6. H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].

    ADS  Google Scholar 

  7. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [SPIRES].

    Article  ADS  Google Scholar 

  8. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].

    Article  ADS  Google Scholar 

  9. K. Agashe, R. Contino and A. Pomarol, The Minimal Composite Higgs Model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].

    Article  ADS  Google Scholar 

  10. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].

    ADS  Google Scholar 

  11. Y. Hosotani and M. Mabe, Higgs boson mass and electroweak-gravity hierarchy from dynamical gauge-Higgs unification in the warped spacetime, Phys. Lett. B 615 (2005) 257 [hep-ph/0503020] [SPIRES].

    ADS  Google Scholar 

  12. Y. Hosotani, S. Noda, Y. Sakamura and S. Shimasaki, Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime, Phys. Rev. D 73 (2006) 096006 [hep-ph/0601241] [SPIRES].

    ADS  Google Scholar 

  13. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  14. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].

    ADS  Google Scholar 

  15. A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs Unification and Radiative Electroweak Symmetry Breaking in Warped Extra Dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [SPIRES].

    ADS  Google Scholar 

  16. G. Panico, E. Ponton, J. Santiago and M. Serone, Dark Matter and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [SPIRES].

    ADS  Google Scholar 

  17. B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [SPIRES].

    Article  ADS  Google Scholar 

  18. L.J. Hall, Y. Nomura and D. Tucker-Smith, Gauge-Higgs unification in higher dimensions, Nucl. Phys. B 639 (2002) 307 [hep-ph/0107331] [SPIRES].

    Article  ADS  Google Scholar 

  19. M. Kubo, C.S. Lim and H. Yamashita, The Hosotani mechanism in bulk gauge theories with an orbifold extra space S 1/Z 2, Mod. Phys. Lett. A 17 (2002) 2249 [hep-ph/0111327] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  20. G. Burdman and Y. Nomura, Unification of Higgs and Gauge Fields in Five Dimensions, Nucl. Phys. B 656 (2003) 3 [hep-ph/0210257] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  21. N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, Dynamical rearrangement of gauge symmetry on the orbifold S 1/Z 2, Nucl. Phys. B 657 (2003) 169 [hep-ph/0212035] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. I. Gogoladze, Y. Mimura and S. Nandi, Gauge Higgs unification on the left-right model, Phys. Lett. B 560 (2003) 204 [hep-ph/0301014] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  23. I. Gogoladze, Y. Mimura and S. Nandi, Model building with gauge-Yukawa unification, Phys. Rev. D 69 (2004) 075006 [hep-ph/0311127] [SPIRES].

    ADS  Google Scholar 

  24. C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [SPIRES].

    Article  ADS  Google Scholar 

  25. K.-w. Choi et al., Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models, JHEP 02 (2004) 037 [hep-ph/0312178] [SPIRES].

    Article  ADS  Google Scholar 

  26. N. Haba, Y. Hosotani, Y. Kawamura and T. Yamashita, Dynamical symmetry breaking in gauge-Higgs unification on orbifold, Phys. Rev. D 70 (2004) 015010 [hep-ph/0401183] [SPIRES].

    ADS  Google Scholar 

  27. G. Cacciapaglia, C. Csáki and S.C. Park, Fully radiative electroweak symmetry breaking, JHEP 03 (2006) 099 [hep-ph/0510366] [SPIRES].

    Article  ADS  Google Scholar 

  28. G. Panico, M. Serone and A. Wulzer, A model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys. B 739 (2006) 186 [hep-ph/0510373] [SPIRES].

    Article  ADS  Google Scholar 

  29. G. Panico, M. Serone and A. Wulzer, Electroweak symmetry breaking and precision tests with a fifth dimension, Nucl. Phys. B 762 (2007) 189 [hep-ph/0605292] [SPIRES].

    Article  ADS  Google Scholar 

  30. N. Maru and K. Takenaga, Effects of bulk mass in gauge-Higgs unification, Phys. Lett. B 637 (2006) 287 [hep-ph/0602149] [SPIRES].

    ADS  Google Scholar 

  31. M. Sakamoto and K. Takenaga, Large gauge hierarchy in gauge-Higgs unification, Phys. Rev. D 75 (2007) 045015 [hep-th/0609067] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  32. C.S. Lim and N. Maru, Towards A Realistic Grand Gauge-Higgs Unification, Phys. Lett. B 653 (2007) 320 [arXiv:0706.1397] [SPIRES].

    ADS  Google Scholar 

  33. G. Panico, M. Safari and M. Serone, Simple and Realistic Composite Higgs Models in Flat Extra Dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [SPIRES].

    Article  ADS  Google Scholar 

  34. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/Composite Phenomenology Simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [SPIRES].

    Article  ADS  Google Scholar 

  35. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].

    Article  ADS  Google Scholar 

  36. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].

    ADS  Google Scholar 

  37. N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. R.S. Chivukula et al., A three site higgsless model, Phys. Rev. D 74 (2006) 075011 [hep-ph/0607124] [SPIRES].

    ADS  Google Scholar 

  39. H.-J. He et al., LHC Signatures of New Gauge Bosons in Minimal Higgsless Model, Phys. Rev. D 78 (2008) 031701 [arXiv:0708.2588] [SPIRES].

    ADS  Google Scholar 

  40. H.-C. Cheng, J. Thaler and L.-T. Wang, Little M-theory, JHEP 09 (2006) 003 [hep-ph/0607205] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  41. R. Foadi, J.T. Laverty, C.R. Schmidt and J.-H. Yu, Radiative Electroweak Symmetry Breaking in a Little Higgs Model, JHEP 06 (2010) 026 [arXiv:1001.0584] [SPIRES].

    Article  ADS  Google Scholar 

  42. M. Baumgart, The Advantages of Four Dimensions for Composite Higgs Models, arXiv:0706.1380 [SPIRES].

  43. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  44. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [SPIRES].

    Article  ADS  Google Scholar 

  45. A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [SPIRES].

    Article  ADS  Google Scholar 

  46. M. Gillioz, A light composite Higgs boson facing electroweak precision tests, Phys. Rev. D 80 (2009) 055003 [arXiv:0806.3450] [SPIRES].

    ADS  Google Scholar 

  47. C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [SPIRES].

    ADS  Google Scholar 

  48. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  49. D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [SPIRES].

    Article  ADS  Google Scholar 

  50. G. Panico and A. Wulzer, Effective Action and Holography in 5D Gauge Theories, JHEP 05 (2007) 060 [hep-th/0703287] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  51. C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].

    Article  ADS  Google Scholar 

  52. C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A Model of Lepton Masses from a Warped Extra Dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [SPIRES].

    Article  ADS  Google Scholar 

  53. J. Santiago, Minimal Flavor Protection: A New Flavor Paradigm in Warped Models, JHEP 12 (2008) 046 [arXiv:0806.1230] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  54. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [SPIRES].

    Article  ADS  Google Scholar 

  55. M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and Flavour Structure of a Warped Extra Dimension with Custodial Protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [SPIRES].

    Article  ADS  Google Scholar 

  56. K. Agashe and R. Contino, Composite Higgs-Mediated FCNC, Phys. Rev. D 80 (2009) 075016 [arXiv:0906.1542] [SPIRES].

    ADS  Google Scholar 

  57. F. del Aguila, A. Carmona and J. Santiago, Neutrino Masses from an A4 Symmetry in Holographic Composite Higgs Models, JHEP 08 (2010) 127 [arXiv:1001.5151] [SPIRES].

    Article  ADS  Google Scholar 

  58. J. Mrazek et al., The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [SPIRES].

    Article  ADS  Google Scholar 

  59. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb{\bar{b}} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].

    ADS  Google Scholar 

  60. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. D. Becciolini, M. Redi and A. Wulzer, AdS/QCD: The Relevance of the Geometry, JHEP 01 (2010) 074 [arXiv:0906.4562] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Panico.

Additional information

ArXiv ePrint: 1106.2719

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panico, G., Wulzer, A. The discrete composite Higgs model. J. High Energ. Phys. 2011, 135 (2011). https://doi.org/10.1007/JHEP09(2011)135

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)135

Keywords

Navigation