Skip to main content
Log in

Thermodynamics and phase transition of rotating regular-de Sitter black holes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We analyze thermodynamic properties of the rotating regular black holes having mass (M), angular momentum (a), and a magnetic charge (g), and encompass Kerr black hole (\(g=0\)). The mass M has a minimum at the radius \(r_+=r_+^{\star }\), where both the heat capacity and temperature vanish. The thermal phase transition is because of the divergence of heat capacity at a critical radius \(r_{+}^{C}\) with stable (unstable) branches for \(r_+<r_+^{C}\) (\(>r_+^{C}\)). We also generalize the rotating regular black holes in de Sitter (dS) background and analyzed its horizon structure to show that for each g, there are two critical values of the mass parameter \(M_{\text {cr1}}\) and \(M_{\text {cr2}}\) which correspond to the degenerate horizons. Thus, we have rotating regular-dS black holes with an additional cosmological horizon apart from the inner (Cauchy) and the outer (event) horizons. Next, we discuss the effective thermodynamic quantities of the rotating regular-dS black holes in the extended phase space where the cosmological constant (\(\Lambda \)) is considered as thermodynamic pressure. Combining the first laws at the two horizons, we calculate the heat capacity at constant pressure \(C_\mathrm{P}\), the volume expansion coefficient \(\alpha \), and the isothermal compressibility \(\kappa _\mathrm{T}\). At a critical point, the specific heat at constant pressure, the volume expansion coefficient, and the isothermal compressibility of the regular-dS black holes exhibit an infinite peak suggesting a second-order phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.W. Hawking, R. Penrose, Proc. R. Soc. A 314, 529 (1970)

    ADS  Google Scholar 

  2. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space and Time (Cambridge University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  3. J. Bardeen, in Proceedings of GR5 (Tiflis, U.S.S.R., 1968)

  4. A. Borde, Phys. Rev. D 50, 3692 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Ayón-Beato, A. García, Phys. Lett. B 464, 25 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  6. A.D. Sakharov, JETP 22, 241 (1966)

    ADS  Google Scholar 

  7. E.B. Gliner, JETP 22, 378 (1966)

    ADS  Google Scholar 

  8. A. Borde, Phys. Rev. D 55, 7615 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Ayon-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  10. S.A. Hayward, Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  11. O.B. Zaslavskii, Phys. Rev. D 80, 064034 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  13. J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 83, 124005 (2011)

    Article  ADS  Google Scholar 

  14. C. Bambi, L. Modesto, Phys. Lett. B 721, 329 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  15. Y.S. Myung, Y.W. Kim, Y.J. Park, Phys. Lett. B 656, 221 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  16. B. Pourhassan, M. Faizal, U. Debnath, Eur. Phys. J. C 76, 145 (2016)

    Article  ADS  Google Scholar 

  17. Z.Y. Fan, Eur. Phys. J. C 77, 266 (2017)

    Article  ADS  Google Scholar 

  18. S.G. Ghosh, Eur. Phys. J. C 75, 532 (2015)

    Article  ADS  Google Scholar 

  19. B. Toshmatov, B. Ahmedov, A. Abdujabbarov, Z. Stuchlík, Phys. Rev. D 89, 104017 (2014)

    Article  ADS  Google Scholar 

  20. M. Amir, S.G. Ghosh, J. High Energy Phys. 1507, 015 (2015)

    Article  ADS  Google Scholar 

  21. S.G. Ghosh, S.D. Maharaj, Eur. Phys. J. C 75, 7 (2015)

    Article  ADS  Google Scholar 

  22. C. Bambi, Mod. Phys. Lett. A 26, 2453 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Bambi, Phys. Lett. B 730, 59 (2014)

    Article  ADS  Google Scholar 

  24. C. Bambi, Z. Cao, L. Modesto, Phys. Rev. D 95, 064006 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  25. U. Debnath, Eur. Phys. J. C 75, 129 (2015)

    Article  ADS  Google Scholar 

  26. X. Guo, H. Li, L. Zhang, R. Zhao, Phys. Rev. D 91, 084009 (2015)

    Article  ADS  Google Scholar 

  27. D. Kubiznak, F. Simovic, Classical Quantum Gravity 33, 245001 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  28. L.C. Zhang, M.S. Ma, H.H. Zhao, R. Zhao, Eur. Phys. J. C 74, 3052 (2014)

    Article  ADS  Google Scholar 

  29. M.S. Ali, S.G. Ghosh, S.D. Maharaj, Class. Quant. Grav. 37, 185003 (2020)

    Article  ADS  Google Scholar 

  30. B. Toshmatov, Z. Stuchlík, B. Ahmedov, Phys. Rev. D 95, 084037 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  31. H. Erbin, Universe 3, 19 (2017)

    Article  ADS  Google Scholar 

  32. V.G. Czinner, H. Iguchi, Eur. Phys. J. C 77, 892 (2017)

    Article  ADS  Google Scholar 

  33. L. Modesto, P. Nicolini, Phys. Rev. D 82, 104035 (2010)

    Article  ADS  Google Scholar 

  34. R. Banerjee, S.K. Modak, D. Roychowdhury, J. High Energy Phys. 10, 125 (2012)

    Article  ADS  Google Scholar 

  35. R. Banerjee, D. Roychowdhury, J. High Energy Physics 11, 004 (2011)

    Article  ADS  Google Scholar 

  36. J. Man, H. Cheng, Gen. Relativ. Gravit. 46, 1660 (2014)

    Article  ADS  Google Scholar 

  37. D.J. Gross, M.J. Perry, L.G. Yaffe, Phys. Rev. D 25, 330 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  38. Y.S. Myung, Y.W. Kim, Y.J. Park, Gen. Relativ. Gravit. 41, 1051 (2009)

    Article  ADS  Google Scholar 

  39. S.G. Ghosh, M. Amir, Eur. Phys. J. C 75, 553 (2015)

    Article  ADS  Google Scholar 

  40. I. Dymnikova, M. Korpusik, Phys. Lett. B 685, 12 (2010)

    Article  ADS  Google Scholar 

  41. C.H. Nam, Eur. Phys. J. C 78, 418 (2018)

    Article  ADS  Google Scholar 

  42. Y. Sekiwa, Phys. Rev. D 73, 084009 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  43. B.P. Dolan, D. Kastor, D. Kubiznak, R.B. Mann, J. Traschen, Phys. Rev. D 87, 104017 (2013)

    Article  ADS  Google Scholar 

  44. K. Hajian, Gen. Relativ. Gravit. 48, 114 (2016)

    Article  ADS  Google Scholar 

  45. J. McInerney, G. Satishchandran, J. Traschen, Classical Quantum Gravity 33, 105007 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Bhattacharya, A. Lahiri, Eur. Phys. J. C 73, 2673 (2013)

    Article  ADS  Google Scholar 

  47. T. Pappas, P. Kanti, N. Pappas, Phys. Rev. D 94, 024035 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Bousso, S.W. Hawking, Phys. Rev. D 54, 6312 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  49. P. Cheng, S.W. Wei, Y.X. Liu, Phys. Rev. D 94, 024025 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  50. M.M. Caldarelli, G. Cognola, D. Klemm, Classical Quantum Gravity 17, 399 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Hanneaux, C. Teitelboim, Phys. Lett. B 143, 145 (1984)

    Google Scholar 

  52. C. Teitelboim, Phys. Lett. B 158, 293 (1985)

    Article  ADS  Google Scholar 

  53. E.A. Larranga Rubio, arXiv:0711.0012

  54. S. Wang, arXiv:gr-qc/0606109

  55. B.P. Dolan, Phys. Rev. D 84, 127503 (2011)

    Article  ADS  Google Scholar 

  56. N. Altamirano, D. Kubiznak, R.B. Mann, Z. Sherkatghanad, Galaxies, 2, 89–159 (2014)

  57. J.X. Mo, W.B. Liu, Phys. Rev. D 89, 084057 (2014)

    Article  ADS  Google Scholar 

  58. B.P. Dolan, Classical Quantum Gravity 28, 235017 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  59. S. Gunasekaran, R.B. Mann, D. Kubiznak, J. High Energy Phys. 1211, 110 (2012)

    Article  ADS  Google Scholar 

  60. H.F. Li, M.S. Ma, L.C. Zhang, R. Zhao, Nucl. Phys. B 920, 211–220 (2017)

    Article  ADS  Google Scholar 

  61. I. Dymnikova, Int. J. Mod. Phys. D 5, 529 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.G.G. and M.S.A. thank DST INDO-South Africa (INDO-SA) bilateral project DST/INT/South Africa/P-06/2016 and also thanks University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit (ACRU), Durban, South Africa, for the hospitality while this work was being done. The research of M. S. A. is supported by the National Postdoctoral Fellowship of the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, File No., PDF/2021/003491.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Sabir Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.S., Ghosh, S.G. Thermodynamics and phase transition of rotating regular-de Sitter black holes. Eur. Phys. J. Plus 137, 486 (2022). https://doi.org/10.1140/epjp/s13360-022-02703-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02703-w

Navigation