Skip to main content
Log in

Note on generalized gravitational entropy in Lovelock gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The recently proposed gravitational entropy generalize the usual black hole entropy to Euclidean solutions without U(1) symmetry in the framework of Einstein gravity. The entropy of such smooth configuration is given by the area of minimal surface, therefore explaining the Ryu-Takayanagi formula of holographic entanglement entropy. In this note we investigate the generalized gravitational entropy for general Lovelock gravity in arbitrary dimensions. We use the replica trick and consider the Euclidean bulk spacetime with conical singularity localized at a codimension two surface. We obtain a constraint equation for the surface by requiring the bulk equation of motion to be of good behavior. When the bulk spacetime is maximally symmetric, the constraints show that the traces of the extrinsic curvatures of the surface are vanishing, i.e. the surface has to be geometrically a minimal surface. However the constraint equation cannot be obtained by the variation of the known functional for holographic entanglement entropy in Lovelock gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206–206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, arXiv:1304.4926 [INSPIRE].

  5. D.V. Fursaev, Entanglement entropy in quantum gravity and the Plateau groblem, Phys. Rev. D 77 (2008) 124002 [arXiv:0711.1221] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  7. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  9. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  13. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Fursaev, Entanglement Renyi entropies in conformal field theories and holography, JHEP 05 (2012) 080 [arXiv:1201.1702] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. Y. Iwashita, T. Kobayashi, T. Shiromizu and H. Yoshino, Holographic entanglement entropy of de Sitter braneworld, Phys. Rev. D 74 (2006) 064027 [hep-th/0606027] [INSPIRE].

    ADS  Google Scholar 

  20. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

    Article  ADS  Google Scholar 

  21. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Ogawa and T. Takayanagi, Higher derivative corrections to holographic entanglement entropy for AdS solitons, JHEP 10 (2011) 147 [arXiv:1107.4363] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. W.-z. Guo, S. He and J. Tao, Note on entanglement temperature for low thermal excited states in higher derivative gravity, arXiv:1305.2682 [INSPIRE].

  25. J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of entanglement entropy from Einstein equation, arXiv:1304.7100 [INSPIRE].

  27. A. Bhattacharyya, A. Kaviraj and A. Sinha, Entanglement entropy in higher derivative holography, arXiv:1305.6694 [INSPIRE].

  28. S.N. Solodukhin, The conical singularity and quantum corrections to entropy of black hole, Phys. Rev. D 51 (1995) 609 [hep-th/9407001] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal black hole entropy as entanglement entropy via AdS 2 /CF T 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. W. Unruh, G. Hayward, W. Israel and D. Mcmanus, Cosmic string loops are straight, Phys. Rev. Lett. 62 (1989) 2897 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. B. Boisseau, C. Charmousis and B. Linet, Dynamics of a selfgravitating thin cosmic string, Phys. Rev. D 55 (1997) 616 [gr-qc/9607029] [INSPIRE].

    ADS  Google Scholar 

  34. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. T.S. Bunch, Surface terms in higher derivative gravity, J. Phys. A 14 (1981) L139.

    MathSciNet  ADS  Google Scholar 

  36. R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].

    ADS  Google Scholar 

  37. S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-ju Zhang.

Additional information

ArXiv ePrint: 1305.6767

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Zhang, Jj. Note on generalized gravitational entropy in Lovelock gravity. J. High Energ. Phys. 2013, 185 (2013). https://doi.org/10.1007/JHEP07(2013)185

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)185

Keywords

Navigation