Skip to main content
Log in

SL(2, \(\mathbb{Z}\)) action on AdS/BCFT and Hall conductivities

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the response of a conserved current to external electromagnetic fields in a holographic system with boundaries using the recently proposed AdS/BCFT (boundary conformal field theory) framework. This, in particular, allows us to extract the Hall current, the Hall conductivity, plus some potentially novel transport coefficients, and relations among them. We also analyze the action of SL(2, \(\mathbb{Z}\)) duality in the gravity bulk, which acts non-trivially on the conductivity of the BCFT. Finally we consider a type IIA string theory embedding of our setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].

    ADS  Google Scholar 

  3. A. O’Bannon, Hall conductivity of flavor fields from AdS/CFT, Phys. Rev. D 76 (2007) 086007 [arXiv:0708.1994] [INSPIRE].

    ADS  Google Scholar 

  4. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFTs on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. E. Keski-Vakkuri and P. Kraus, Quantum Hall effect in AdS/CFT, JHEP 09 (2008) 130 [arXiv:0805.4643] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. J.L. Davis, P. Kraus and A. Shah, Gravity dual of a quantum Hall plateau transition, JHEP 11 (2008) 020 [arXiv:0809.1876] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Belhaj and A. Segui, Engineering of quantum Hall effect from type IIA string theory on the K3 surface, Phys. Lett. B 691 (2010) 261 [arXiv:1002.2067] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall effect in a holographic model, JHEP 10 (2010) 063 [arXiv:1003.4965] [INSPIRE].

    Article  ADS  Google Scholar 

  10. L.D. Landau and E.M. Lifshitz, Fluid mechanics, Pergamon Press, U.K. (1987).

    MATH  Google Scholar 

  11. A. Bayntun, C. Burgess, B.P. Dolan and S.-S. Lee, AdS/QHE: towards a holographic description of quantum Hall experiments, New J. Phys. 13 (2011) 035012 [arXiv:1008.1917] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Bayntun and C. Burgess, Finite size scaling in quantum hallography, arXiv:1112.3698 [INSPIRE].

  13. M. Cadoni and P. Pani, Holography of charged dilatonic black branes at finite temperature, JHEP 04 (2011) 049 [arXiv:1102.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  14. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  17. E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  18. O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for D3-branes ending on 5-branes, Phys. Rev. D 84 (2011) 126003 [arXiv:1106.1870] [INSPIRE].

    ADS  Google Scholar 

  19. M. Chiodaroli, E. D’Hoker and M. Gutperle, Simple holographic duals to boundary CFTs, JHEP 02 (2012) 005 [arXiv:1111.6912] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Alishahiha and R. Fareghbal, Boundary CFT from holography, Phys. Rev. D 84 (2011) 106002 [arXiv:1108.5607] [INSPIRE].

    ADS  Google Scholar 

  23. M. Setare and V. Kamali, Two point functions of BCFT, arXiv:1109.3849 [INSPIRE].

  24. M. Setare and V. Kamali, Anti-de Sitter/boundary conformal field theory correspondence in the nonrelativistic limit, arXiv:1202.4917 [INSPIRE].

  25. F. Haldane, Model for a quantum Hall effect without Landau levels: condensed-matter realization of theparity anomaly’, Phys. Rev. Lett. 61 (1988) 2015 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Zee, Quantum Hall fluids, in the proceedings of the Ninth Chris Engelbrecht summer school on theoretical physics, January 17-28, Tsitsikamma National Park, South Africa (1994).

    Google Scholar 

  27. S. Girvin, Particle-hole symmetry in the anomalous quantum Hall effect, Phys. Rev. B 29 (1984) 6012 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. J.K. Jain, S.A. Kivelson and N. Trivedi, Scaling theory of the fractional quantum Hall effect, Phys. Rev. Lett. 64 (1990) 1297 .

    Article  ADS  Google Scholar 

  29. J.K. Jain and V.J. Goldman, Hierarchy of states in the fractional quantum Hall effect, Phys. Rev. B 45 (1992) 1255 .

    ADS  Google Scholar 

  30. E.H. Fradkin and S. Kivelson, Modular invariance, selfduality and the phase transition between quantum Hall plateaus, Nucl. Phys. B 474 (1996) 543 [cond-mat/9603156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. C. Burgess and B.P. Dolan, Particle vortex duality and the modular group: applications to the quantum Hall effect and other 2D systems, Phys. Rev. B 63 (2001) 155309 [hep-th/0010246] [INSPIRE].

    ADS  Google Scholar 

  32. A.D. Shapere and F. Wilczek, Selfdual models with theta terms, Nucl. Phys. B 320 (1989) 669 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Rey and A. Zee, Selfduality of three-dimensional Chern-Simons theory, Nucl. Phys. B 352 (1991) 897 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. C.A. Lutken and G.G. Ross, Duality in the quantum Hall system, Phys. Rev. B 45 (1992) 11837 .

    ADS  Google Scholar 

  35. S. Kivelson, D.-H. Lee and S.-C. Zhang, Global phase diagram in the quantum Hall effect, Phys. Rev. B 46 (1992) 2223 [INSPIRE].

    ADS  Google Scholar 

  36. C. Lütken, Geometry of renormalization group flows constrained by discrete global symmetries, Nucl. Phys. B 396 (1993) 670 [INSPIRE].

    Article  ADS  Google Scholar 

  37. B.P. Dolan, Duality and the modular group in the quantum Hall effect, J. Phys. A 32 (1999) L243 [cond-mat/9805171] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. C. Burgess, R. Dib and B.P. Dolan, Derivation of the semicircle law from the law of corresponding states, Phys. Rev. B 62 (2000) 15359 [cond-mat/9911476] [INSPIRE].

    ADS  Google Scholar 

  39. E. Witten, SL(2, \(\mathbb{Z}\)) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].

  40. S.A. Hartnoll and C.P. Herzog, Ohms Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  42. K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

    Article  ADS  Google Scholar 

  43. C.P. Herzog, P. Kovtun, S. Sachdev and D.T. Son, Quantum critical transport, duality and M-theory, Phys. Rev. D 75 (2007) 085020 [hep-th/0701036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald and N.P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82 (2010) 1539 [arXiv:0904.4154].

    Article  ADS  Google Scholar 

  45. C. Nayak, S.H. Simon, A. Stern, M. Freedman, and S.D. Sarma, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys. 80 (2008) 1083 .

    Article  ADS  MATH  Google Scholar 

  46. L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (1931) 405 .

    Article  ADS  Google Scholar 

  47. L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (1931) 2265 .

    Article  ADS  MATH  Google Scholar 

  48. R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jap. 12 (1957) 570.

    Article  MathSciNet  ADS  Google Scholar 

  49. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109 [arXiv:1012.4831] [INSPIRE].

    Article  ADS  Google Scholar 

  52. S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Karch and S. Sondhi, Non-linear, finite frequency quantum critical transport from AdS/CFT, JHEP 01 (2011) 149 [arXiv:1008.4134] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  57. K. Jensen et al., Parity-violating hydrodynamics in 2 + 1 dimensions, JHEP 05 (2012) 102 [arXiv:1112.4498] [INSPIRE].

    Article  ADS  Google Scholar 

  58. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. Y. Hikida, W. Li and T. Takayanagi, ABJM with Flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. A. Dabholkar and J. Park, Strings on orientifolds, Nucl. Phys. B 477 (1996) 701 [hep-th/9604178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. A. Hanany and B. Kol, On orientifolds, discrete torsion, branes and M-theory, JHEP 06 (2000) 013 [hep-th/0003025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kaminski.

Additional information

ArXiv ePrint: 1204.0012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, M., Kaminski, M. & Karch, A. SL(2, \(\mathbb{Z}\)) action on AdS/BCFT and Hall conductivities. J. High Energ. Phys. 2012, 150 (2012). https://doi.org/10.1007/JHEP07(2012)150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)150

Keywords

Navigation