Skip to main content
Log in

Holography beyond conformal invariance and AdS isometry?

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Contribution for the JETP special issue in honor of V.A.Rubakov’s 60th birthday

Abstract

We suggest that the principle of holographic duality be extended beyond conformal invariance and AdS isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on its boundary, provided that the boundary operator represents the inverse propagators of the theory induced on the boundary by the Dirichlet boundary value problem in the bulk spacetime. This relation holds for operators of a general spin-tensor structure on generic manifolds with boundaries irrespective of their background geometry and conformal invariance, and it apparently underlies numerous O(N 0) tests of the AdS/CFT correspondence, based on direct calculation of the bulk and boundary partition functions, Casimir energies, and conformal anomalies. The generalized holographic duality is discussed within the concept of the “double-trace” deformation of the boundary theory, which is responsible in the case of large-N CFT coupled to the tower of higher-spin gauge fields for the renormalization group flow between infrared and ultraviolet fixed points. Potential extension of this method beyond the one-loop order is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 139 (1983); R. Gregory, V. A. Rubakov, and S. M. Sibiryakov, Phys. Rev. Lett. 84, 5928 (2000). arXiv:hep-th/0002072.

    Article  ADS  Google Scholar 

  2. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231252 (1998). arXiv:hep-th/9711200; S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105114 (1998). arXiv:hep-th/9802150.

    MathSciNet  Google Scholar 

  3. E. Witten, Adv. Theor. Math. Phys. 2, 253291 (1998). arXiv:hep-th/9804083.

    Google Scholar 

  4. H. Liu and A. A. Tseytlin, arXiv:hep-th/9804083.

  5. I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 550,213 (2002). arXiv:hep-th/0210114.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. M. A. Vasiliev, Phys. Lett. B 243, 378 (1990); M. A. Vasiliev, Phys. Lett. B 285, 225 (1992); M. A. Vasiliev, Phys. Lett. B 567, 139 (2003). arXiv:hep-th/0304049.

    Article  ADS  MathSciNet  Google Scholar 

  7. X. Bekaert, S. Cnockaert, C. Iazeolla, and M. Vasiliev, arXiv:hep-th/0503128.

  8. S. H. Shenker and X. Yin, arXiv:1109.3519.

  9. A. Jevicki, K. Jin, and J. Yoon, arXiv:1401.3318; S. R. Das and A. Jevicki, Phys. Rev. D: Part., Fields 68, 044011 (2003). arXiv:hep-th/0304093.

  10. S. Giombi and I. R. Klebanov, J. High Energy Phys. 1312, 068 (2013). arXiv:1308.2337; S. Giombi, I. R. Klebanov, and B. R. Safdi, arXiv:1401.0825.

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Giombi, I. R. Klebanov, and A. A. Tseytlin, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 90, 024048 (2014). arXiv:1402.5396.

    Article  Google Scholar 

  12. S. Giombi, I. R. Klebanov, S. S. Pufu, B. R. Safdi, and G. Tarnopolsky, J. High Energy Phys. 1310, 016 (2013). arXiv:1306.5242.

    Article  ADS  MathSciNet  Google Scholar 

  13. A. A. Tseytlin, Nucl. Phys. B 877, 598 (2013). arXiv:1309.0785.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. E. Witten, arXiv:hep-th/0112258.

  15. S. S. Gubser and I. R. Klebanov, Nucl. Phys. B 656, 23 (2003). arXiv:hep-th/0212138.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. A. O. Barvinsky and D. V. Nesterov, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 73, 066012 (2006). arXiv:hep-th/0512291.

    Article  MathSciNet  Google Scholar 

  17. I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 550,213 (2002). arXiv:hep-th/0210114.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. E. Sezgin and P. Sundell, J. High Energy Phys. 07, 044 (2005). arXiv:hep-th/0305040; R. G. Leigh and A. C. Petkou, J. High Energy Phys. 06, 011 (2003). arXiv:hep-th/0304217.

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Giombi and X. Yin, J. High Energy Phys. 1009, 015 (2010). arXiv:0912.3462; S. Giombi and X. Yin, J. High Energy Phys. 1104, 086 (2011). arXiv:1004.3736; S. Giombi and X. Yin, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 85, 086005 (2012). arXiv:1105.4011.

    MathSciNet  Google Scholar 

  20. J. Maldacena and A. Zhiboedov, J. Phys. A: Math. Gen. 46, 214011 (2013). arXiv:1112.1016; J. Maldacena and A. Zhiboedov, Classical Quantum Gravity 30, 104003 (2013). arXiv:1204.3882.

    Article  ADS  MathSciNet  Google Scholar 

  21. V. Didenko and E. Skvortsov, J. Phys. A: Math. Gen. 46, 214010 (2013). arXiv:1207.6786; V. Didenko and E. Skvortsov, J. High Energy Phys. 1304, 158 (2013). arXiv:1210.7963; V. Didenko, J. Mei, and E. Skvortsov, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 88, 046011 (2013). arXiv:1301.4166.

    Article  ADS  MathSciNet  Google Scholar 

  22. O. Gelfond and M. Vasiliev, Nucl. Phys. B 876, 871 (2013). arXiv:1301.3123.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. C. Fronsdal, Phys. Rev. D: Part., Fields 18, 3624 (1978); C. Fronsdal, Phys. Rev. D: Part., Fields 20, 848 (1979); I. L. Buchbinder, A. Pashnev, and M. Tsulaia, Phys. Lett. B 523, 338 (2001). arXiv:hep-th/0109067; A. Sagnotti and M. Tsulaia, Nucl. Phys. B 682, 83 (2004). arXiv:hep-th/0311257.

    Article  ADS  Google Scholar 

  24. S. S. Gubser and I. Mitra, Phys. Rev. D: Part., Fields 67, 064018 (2003). arXiv:hep-th/0210093.

    Article  ADS  MathSciNet  Google Scholar 

  25. Z. Komargodski and A. Schwimmer, J. High Energy Phys. 1112, 099 (2011). arXiv:1107.3987; Z. Komargodski, J. High Energy Phys. 1207, 069 (2012). arXiv:1112.4538.

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Hartman and L. Rastelli, J. High Energy Phys. 0801, arXiv:hep-th/0602106.

  27. D. E. Diaz and H. Dorn, J. High Energy Phys. 0705,046 (2007). arXiv:hep-th/0702163.

    Article  ADS  MathSciNet  Google Scholar 

  28. A. O. Barvinsky, A. Yu. Kamenshchik, and I. P. Karmazin, Ann. Phys. 219, 201 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. K. Kirsten and A. J. McKane, Ann. Phys. 308, 502 (2003). arXiv:math-ph/0305010.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. M. R. Gaberdiel, D. Grumiller, and D. Vassilevich, J. High Energy Phys. 1011, 094 (2010). arXiv:1007.5189; M. R. Gaberdiel, R. Gopakumar, and A. Saha, J. High Energy Phys. 1102, 004 (2011). arXiv:1009.6087; R. K. Gupta and S. Lal, J. High Energy Phys. 1207, 071 (2012). arXiv:1205.1130.

    Article  ADS  MathSciNet  Google Scholar 

  31. A. O. Barvinsky, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 74, 084033 (2006). arXiv:hep-th/0608004.

    Article  MathSciNet  Google Scholar 

  32. L. Randall and S. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). arXiv:hep-th/9906064.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. G. R. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485, 208 (2000). arXiv:hep-th/0005016.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. C. Deffayet, Phys. Lett. B 502, 199 (2001). arXiv:hepth/0010186; C. Deffayet, G. R. Dvali, and G. Gabadadze, Phys. Rev. D: Part., Fields 65, 044023 (2003). arXiv:astro-ph/0105068.

    Article  ADS  MATH  Google Scholar 

  35. E. S. Fradkin and A. A. Tseytlin, Phys. Lett. B 163, 123 (1985); C. G. Callan, C. Lovelace, C. R. Nappi, and S. A. Yost, Nucl. Phys. B 288, 525 (1987); W. Kummer and D. V. Vassilevich, J. High Energy Phys. 0007, 012 (2000). arXiv:hep-th/0006108.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. A. O. Barvinsky and A. Yu. Kamenshchik, J. Cosmol. Astropart. Phys. 0609, 014 (2006). arXiv:hep-th/0605132; A. O. Barvinsky, Phys. Rev. Lett. 99, 071301 (2007). arXiv:hep-th/0704.0083.

    Article  ADS  Google Scholar 

  37. A. O. Barvinsky, C. Deffayet, and A. Yu. Kamenshchik, J. Cosmol. Astropart. Phys. 0805, 020 (2008). arXiv:0801.2063; A. O. Barvinsky, C. Deffayet, and A. Yu. Kamenshchik, J. Cosmol. Astropart. Phys. 1005, 034 (2010). arXiv:0912.4604.

    Article  ADS  Google Scholar 

  38. A. Strominger, J. High Energy Phys. 0110, 034 (2001). arXiv:hep-th/0106113; A. Strominger, J. High Energy Phys. 0111, 049 (2001). arXiv:hep-th/0110087.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Barvinsky.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barvinsky, A.O. Holography beyond conformal invariance and AdS isometry?. J. Exp. Theor. Phys. 120, 449–459 (2015). https://doi.org/10.1134/S1063776115030036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115030036

Keywords

Navigation