Skip to main content
Log in

Subtracted geometry from Harrison transformations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the rotating non-extremal black hole of N=2 D=4 STU supergravity carrying three magnetic charges and one electric charge. We show that its subtracted geometry is obtained by applying a specific SO(4,4) Harrison transformation on the black hole. As previously noted, the resulting subtracted geometry is a solution of the N=2 S=T=U supergravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [INSPIRE].

    ADS  Google Scholar 

  2. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Cargese lectures on the Kerr/CFT correspondence, Nucl. Phys. Proc. Suppl. 216 (2011) 194 [arXiv:1103.2355] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Compere, The Kerr/CFT correspondence and its extensions: a comprehensive review, arXiv:1203.3561 [INSPIRE].

  6. A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. S. Bertini, S.L. Cacciatori and D. Klemm, Conformal structure of the Schwarzschild black hole, Phys. Rev. D 85 (2012) 064018 [arXiv:1106.0999] [INSPIRE].

    ADS  Google Scholar 

  8. M. Cvetič and F. Larsen, Conformal symmetry for general black holes, JHEP 02 (2012) 122 [arXiv:1106.3341] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Cvetič and F. Larsen, Conformal Symmetry for Black Holes in Four Dimensions, arXiv:1112.4846 [INSPIRE].

  10. M. Cvetič and G. Gibbons, Conformal symmetry of a black hole as a scaling limit: a black hole in an asymptotically conical box, arXiv:1201.0601 [INSPIRE].

  11. G. Compere, W. Song and A. Virmani, Microscopics of extremal Kerr from spinning M5 branes, JHEP 10 (2011) 087 [arXiv:1010.0685] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Tanabe, The Kerr black hole and rotating black string by intersecting M-branes, arXiv:0804.3831 [INSPIRE].

  13. Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].

    ADS  Google Scholar 

  15. M. Cvetič and F. Larsen, Greybody factors and charges in Kerr/CFT, JHEP 09 (2009) 088 [arXiv:0908.1136] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Compere, S. de Buyl, E. Jamsin and A. Virmani, G2 dualities in D = 5 supergravity and black strings, Class. Quant. Grav. 26 (2009) 125016 [arXiv:0903.1645] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P. Figueras, E. Jamsin, J.V. Rocha and A. Virmani, Integrability of five dimensional minimal supergravity and charged rotating black holes, Class. Quant. Grav. 27 (2010) 135011 [arXiv:0912.3199] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.-S. Kim, J. Lindman Hornlund, J. Palmkvist and A. Virmani, Extremal solutions of the S3 model and nilpotent orbits of G 2(2), JHEP 08 (2010) 072 [arXiv:1004.5242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Compere, S. de Buyl, S. Stotyn and A. Virmani, A general black string and its microscopics, JHEP 11 (2010) 133 [arXiv:1006.5464] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.L. Hornlund and A. Virmani, Extremal limits of the Cvetič-Youm black hole and nilpotent orbits of G 2(2), JHEP 11 (2010) 062 [Erratum ibid. 1205 (2012) 038] [arXiv:1008.3329] [INSPIRE].

  22. T. Harmark and N. Obers, Thermodynamics of spinning branes and their dual field theories, JHEP 01 (2000) 008 [hep-th/9910036] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Cvetič and F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].

    ADS  Google Scholar 

  24. J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. M. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Emparan and H.S. Reall, Black rings, Class. Quant. Grav. 23 (2006) R169 [hep-th/0608012] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. C.N. Pope, Lectures on Kaluza-Klein theory, http://faculty.physics.tamu.edu/pope/.

  28. A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995) 92 [hep-th/9502072] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G.L. Cardoso, J.M. Oberreuter and J. Perz, Entropy function for rotating extremal black holes in very special geometry, JHEP 05 (2007) 025 [hep-th/0701176] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Gaiotto, W. Li and M. Padi, Non-supersymmetric attractor flow in symmetric spaces, JHEP 12 (2007) 093 [arXiv:0710.1638] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Ferrara and S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Bossard and C. Ruef, Interacting non-BPS black holes, Gen. Rel. Grav. 44 (2012) 21 [arXiv:1106.5806] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. D.V. Gal’tsov and N.G. Scherbluk, Generating technique for U (1)3 5D supergravity, Phys. Rev. D 78 (2008) 064033 [arXiv:0805.3924] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. K. Copsey and G.T. Horowitz, The role of dipole charges in black hole thermodynamics, Phys. Rev. D 73 (2006) 024015 [hep-th/0505278] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. M. Cvetič, G. Gibbons and C. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabh Virmani.

Additional information

ArXiv ePrint: 1203.5088

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virmani, A. Subtracted geometry from Harrison transformations. J. High Energ. Phys. 2012, 86 (2012). https://doi.org/10.1007/JHEP07(2012)086

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)086

Keywords

Navigation