Skip to main content
Log in

Extremal solutions of the S3 model and nilpotent orbits of G2(2)

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study extremal black hole solutions of the S3 model (obtained by setting S=T=U in the STU model) using group theoretical methods. Upon dimensional reduction over time, the S3 model exhibits the pseudo-Riemannian coset structure \( {{G} \left/ {{\tilde{K}}} \right.} \) with G = G2(2) and \( \tilde{K} = {\text{S}}{{\text{O}}_0}\left( {2,2} \right) \). We study nilpotent \( \tilde{K} \)-orbits of G2(2) corresponding to non-rotating single-center extremal solutions. We find six such distinct \( \tilde{K} \)-orbits. Three of these orbits are supersymmetric, one is non-supersymmetric, and two are unphysical. We write general solutions and discuss examples in all four physical orbits. We show that all solutions in supersymmetric orbits when uplifted to five-dimensional minimal supergravity have single-center Gibbons-Hawking space as their four-dimensional Euclidean hyper-Kähler base space. We construct hitherto unknown extremal (supersymmetric as well as non-supersymmetric) pressureless black strings of minimal five-dimensional supergravity and briefly discuss their relation to black rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [SPIRES].

    Article  ADS  Google Scholar 

  5. K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. A. Ceresole and G. Dall’Agata, Flow equations for non-BPS extremal black holes, JHEP 03 (2007) 110 [hep-th/0702088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First order description of black holes in moduli space, JHEP 11 (2007) 032 [arXiv:0706.0712] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Lopes Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter and J. Perz, First-order flow equations for extremal black holes in very special geometry, JHEP 10 (2007) 063 [arXiv:0706.3373] [SPIRES].

    Article  Google Scholar 

  9. J. Perz, P. Smyth, T. Van Riet and B. Vercnocke, First-order flow equations for extremal and non-extremal black holes, JHEP 03 (2009) 150 [arXiv:0810.1528] [SPIRES].

    Article  ADS  Google Scholar 

  10. K. Hotta and T. Kubota, Exact solutions and the attractor mechanism in non-BPS black holes, Prog. Theor. Phys. 118 (2007) 969 [arXiv:0707.4554] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  11. E.G. Gimon, F. Larsen and J. Simon, Black holes in supergravity: the non-BPS branch, JHEP 01 (2008) 040 [arXiv:0710.4967] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, stu black holes unveiled, arXiv:0807.3503 [SPIRES].

  13. E.G. Gimon, F. Larsen and J. Simon, Constituent model of extremal non-BPS black holes, JHEP 07 (2009) 052 [arXiv:0903.0719] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Bossard, H. Nicolai and K.S. Stelle, Universal BPS structure of stationary supergravity solutions, JHEP 07 (2009) 003 [arXiv:0902.4438] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Bossard and H. Nicolai, Multi-black holes from nilpotent Lie algebra orbits, Gen. Rel. Grav. 42 (2010) 509 [arXiv:0906.1987] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. M. Günaydin, A. Neitzke, B. Pioline and A. Waldron, BPS black holes, quantum attractor flows and automorphic forms, Phys. Rev. D 73 (2006) 084019 [hep-th/0512296] [SPIRES].

    ADS  Google Scholar 

  18. M. Berkooz and B. Pioline, 5D black holes and non-linear σ-models, JHEP 05 (2008) 045 [arXiv:0802.1659] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Gaiotto, W.W. Li and M. Padi, Non-supersymmetric attractor flow in symmetric spaces, JHEP 12 (2007) 093 [arXiv:0710.1638] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante and T. Van Riet, Generating geodesic flows and supergravity solutions, Nucl. Phys. B 812 (2009) 343 [arXiv:0806.2310] [SPIRES].

    Article  ADS  Google Scholar 

  21. J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. F. Larsen, Entropy of thermally excited black rings, JHEP 10 (2005) 100 [hep-th/0505152] [SPIRES].

    Article  ADS  Google Scholar 

  23. J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. I. Bena, Splitting hairs of the three charge black hole, Phys. Rev. D 70 (2004) 105018 [hep-th/0404073] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. H. Elvang, A charged rotating black ring, Phys. Rev. D 68 (2003) 124016 [hep-th/0305247] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. R. Emparan, Rotating circular strings and infinite non-uniqueness of black rings, JHEP 03 (2004) 064 [hep-th/0402149] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Elvang and R. Emparan, Black rings, supertubes and a stringy resolution of black hole non-uniqueness, JHEP 11 (2003) 035 [hep-th/0310008] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988) 295 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. P. Dobiasch and D. Maison, Stationary, spherically symmetric solutions of Jordan’S unified theory of gravity and electromagnetism, Gen. Rel. Grav. 14 (1982) 231 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. E. Cremmer, B. Julia, H. Lü and C.N. Pope, Higher-dimensional origin of D = 3 coset symmetries, hep-th/9909099 [SPIRES].

  34. A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995) 92 [hep-th/9502072] [SPIRES].

    Article  ADS  Google Scholar 

  35. G. Compere, S. de Buyl, E. Jamsin and A. Virmani, G 2 dualities in D = 5 supergravity and black strings, Class. Quant. Grav. 26 (2009) 125016 [arXiv:0903.1645] [SPIRES].

    Article  ADS  Google Scholar 

  36. G. Bossard, H. Nicolai and K.S. Stelle, Gravitational multi-NUT solitons, Komar masses and charges, Gen. Rel. Grav. 41 (2009) 1367 [arXiv:0809.5218] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. G.W. Gibbons and P.J. Ruback, The hidden symmetries of multicenter metrics, Commun. Math. Phys. 115 (1988) 267 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. G.W. Gibbons and S.W. Hawking, Gravitational multi -instantons, Phys. Lett. B 78 (1978) 430 [SPIRES].

    ADS  Google Scholar 

  39. H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric 4D rotating black holes from 5D black rings, JHEP 08 (2005) 042 [hep-th/0504125] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. D. Collingwood and W. McGovern, Nilpotent orbits in semisimple lie algebras, Van Nostrand Reinhold Mathematics Series (1993).

  41. D. Djokovic, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Alg. 112 (1987) 503.

    Google Scholar 

  42. R. Kallosh and B. Kol, E 7 symmetric area of the black hole horizon, Phys. Rev. D 53 (1996) 5344 [hep-th/9602014] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. S. Giusto and S.D. Mathur, Geometry of D1 – D5 – P bound states, Nucl. Phys. B 729 (2005) 203 [hep-th/0409067] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Shmakova, Calabi-Yau black holes, Phys. Rev. D 56 (1997) 540 [hep-th/9612076] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [SPIRES].

    ADS  Google Scholar 

  49. H. Elvang, R. Emparan and P. Figueras, Non-supersymmetric black rings as thermally excited supertubes, JHEP 02 (2005) 031 [hep-th/0412130] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. G. Compere, S. de Buyl, E. Jamsin and A. Virmani, A general black string and its microscopics,[arXiv:1006.5464] [SPIRES].

  51. L. Houart, A. Kleinschmidt, J. Lindman Hornlund, D. Persson and N. Tabti, Finite and infinite-dimensional symmetries of pure N = 2 supergravity in D = 4, JHEP 08 (2009) 098 [arXiv:0905.4651] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379 [hep-th/9505038] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys. B 575 (2000) 211 [hep-th/9909102] [SPIRES].

    Article  ADS  Google Scholar 

  54. K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. P. Figueras, E. Jamsin, J.V. Rocha and A. Virmani, Integrability of five dimensional minimal supergravity and charged rotating black holes, Class. Quant. Grav. 27 (2010) 135011 [arXiv:0912.3199] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Palmkvist.

Additional information

ArXiv ePrint: 1004.5242

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SS., Lindman Hörnlund, J., Palmkvist, J. et al. Extremal solutions of the S3 model and nilpotent orbits of G2(2) . J. High Energ. Phys. 2010, 72 (2010). https://doi.org/10.1007/JHEP08(2010)072

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)072

Keywords

Navigation